493
Views
6
CrossRef citations to date
0
Altmetric
Drug Evaluation

Derazantinib: an investigational drug for the treatment of cholangiocarcinoma

, , , , , , , , , , , , & show all
Pages 1071-1080 | Received 26 Aug 2021, Accepted 15 Oct 2021, Published online: 09 Nov 2021

References

  • Rizvi S, Khan SA, Hallemeier CL, et al., Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 15(2): 95–111. 2018.
  • Dodson RM, Weiss MJ, Cosgrove D, et al. Intrahepatic cholangiocarcinoma: management options and emerging therapies. J Am Coll Surg. 2013;217(4):736–750.
  • Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–2179.
  • Wu L, Tsilimigras DI, Paredes AZ, et al. Trends in the incidence, treatment and outcomes of patients with intrahepatic cholangiocarcinoma in the USA: facility type is associated with margin status, use of lymphadenectomy and overall survival. World J Surg. 2019;43(7):1777–1787.
  • Bragazzi MC, Cardinale V, Carpino G, et al. Cholangiocarcinoma: epidemiology and risk factors. Transl Gastrointest Cancer. 2012;1:21–32.
  • Shaib YH, El-Serag HB, Nooka AK, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a hospital-based case-control study. Am J Gastroenterol. 2007;102(5):1016–1021.
  • Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–1289.
  • Valle J, Wasan H, Palmer DH, et al., Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 362(14): 1273–1281. 2010.
  • Lowery MA, Goff LW, Keenan BP, et al., Second-line chemotherapy in advanced biliary cancers: a retrospective, multicenter analysis of outcomes. Cancer. 125(24): 4426–4434. 2019.
  • Lamarca A, Hubner RA, Ryder WD, et al. Second-line chemotherapy in advanced biliary cancer: a systematic review. Ann Oncol. 2014;25(12):2328–2338.
  • Lamarca A, Palmer DH, Wasan HS, et al., Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 22(5): 690–701. 2021.
  • Silverman IM, Hollebecque A, Luc Friboulet L, et al., Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib. Cancer Discov. 11(2): 326–339. 2021.
  • Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention. Clin Cancer Res. 2018;24(17):4154–4161.
  • Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7(10):1116–1135.
  • Borad MJ, Champion MD, Egan JB, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 2014 Feb 13;10(2):e1004135.
  • Jain A, Borad MJ, Kelley RK, et al. Cholangiocarcinoma with FGFR genetic aberrations: a unique clinical phenotype. JCO Precis Oncol. 2018;2:1–12.
  • Droz dit Busset M, Shaib WL, Mody K, et al., Derazantinib for patients with intrahepatic cholangiocarcinoma harboring FGFR2 fusions/rearrangements: primary results from the Phase 2 study FIDES-01 [abstract]. Ann Oncol. 32(suppl_5): S376–S381. 2021.
  • Goyal L, Meric-Bernstam F, Hollebecque A, et al. Primary results of phase 2 FOENIX-CCA2: the irreversible FGFR1-4 inhibitor futibatinib in intrahepatic cholangiocarcinoma with FGFR2 fusions/rearrangements [abstract]. Cancer Res. 2021;81(Suppl 13):CT010.
  • Javle M, Roychowdhury S, Kelley RK, et al. Final results from a phase II study of infigratinib (BGJ398), an FGFR-selective tyrosine kinase inhibitor, in patients with previously treated advanced cholangiocarcinoma harboring an FGFR2 gene fusion or rearrangement. J Clin Oncol. 2021a;39(3_suppl):265.
  • Abou-Alfa GK, Sahai V, Hollebecque A, et al., Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21(5): 671–684. 2020a.
  • Droz Dit Busset M, Shaib WL, Harris PH, et al., Efficacy of derazantinib in intrahepatic cholangiocarcinoma patients with FGFR2 mutations or amplifications: pooled analysis of clinical trials and early access programs. Ann Oncol. 31(5): S1231. 2020.
  • Krook MA, Lenyo A, Wilberding M, et al. Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-fusion cholangiocarcinoma. Mol Cancer Ther. 2020;19(3):847–857.
  • Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al., Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer. 120(2): 165–171. 2019.
  • Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36(3):276–282.
  • Papadopoulos KP, El-Rayes BF, Tolcher AW, et al. A Phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. Br J Cancer. 2017 Nov 21;117(11):1592–1599.
  • Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17(5):318–332.
  • Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol. 2017;16(2):105–122.
  • Farshidfar F, Zheng S, Gingras MC, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 2017;18(11):2780–2794.
  • Abou-Alfa GK, Macarulla T, Javle MM, et al., Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21(6): 796–807. 2020b.
  • Javle M, Mitesh J, Borad MJ, et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study Lancet Oncol 2021 Published Online 2021 Jul 30 229 1290–1300
  • Moeini A, Sia D, Bardeesy N, et al. Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma. Clin Cancer Res. 2016;22(2):291–300.
  • Borad MJ, Gores GJ, Roberts LR. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Curr Opin Gastroenterol. 2015;31(3):264–268.
  • Gallo LH, Nelson KN, Meyer AN, et al. Functions of fibroblast growth factor receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev. 2015;26(4):425–449.
  • Cleary JM, Raghavan S, Wu Q, et al. FGFR2 extracellular domain in-frame deletions are therapeutically targetable genomic alterations that function as oncogenic drivers in cholangiocarcinoma. Cancer Discov. 2021;11(10):2488–2505. Online ahead of print
  • Helsten T, Elkin S, Arthur E, et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016 Jan 1;22(1):259–267.
  • Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatol. 2014;59(4):1427–1434.
  • Graham RP, Barr Fritcher EG, Pestova E, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45(8):1630–1638.
  • Wu YM, Su F, Kalyana-Sundaram S, et al., Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3(6): 636–647. 2013.
  • Hall T, Yu Y, Eathiraj S, et al. Preclinical activity of derazantinib, a novel inhibitor targeting FGFR dysregulation. PLoS ONE. 2016;11(9):e0162594.
  • McSheehy P, Bachmann F, Forster-Gross N, et al. Derazantinib: a dual FGFR/CSF1R-inhibitor active in PDX-models of urothelial cancer. Mol Cancer Ther. 2019;18(Suppl 12):LB–C12.
  • Raggi C, Fiaccadori K, Pastore M, et al. Antitumor activity of a novel Fibroblast Growth Factor Receptor (FGFR) inhibitor for intrahepatic cholangiocarcinoma. Am J Pathol. 2019 Oct;189(10):2090–2101.
  • Kotini MP, Bachmann F, Spickermann J, et al. Probing the effects of the FGFR-Inhibitor derazantinib on vascular development in zebrafish embryos. Pharmaceuticals. 2020;14(1):25–38.
  • McSheehy P, Boult J, Robinson S, et al. Derazantinib, an oral fibroblast growth factor receptor inhibitor, in phase-2 clinical development, shows anti-angiogenic activity in pre-clinical models. Eur J Cancer. 2020;138:S25–S26.
  • Abdul-Karim RM, Chaudhry A, Anna Patrikidou A, et al., Derazantinib in combination with atezolizumab in patients with solid tumors: results from the dose-finding phase Ib substudy of FIDES-02. J Clin Oncol. 39(6_suppl): 437. 2021.
  • Lamarca A, Ross P, Wasan HS, et al. Advanced intrahepatic cholangiocarcinoma: post-hoc analysis of the ABC-01, −02 and −03 clinical trials. J Natl Cancer Inst. 2020b;112:200–210.
  • Benson AB, D’Angelica MI, Abbott DE, et al. NCCN guidelines insights: hepatobiliary cancers, version 1.2017. J NCCN. 2017;15(5):563–573.
  • Valle JW, Borbath I, Khan SA, et al., Biliary cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 27(suppl 5): V28–V37. 2016.
  • Lamarca A, Barriuso J, McNamara MG, et al. Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol. 2020a;73(1):170–185.
  • Lamarca A, Kapacee Z, Breeze M, et al. Molecular profiling in daily clinical practice: practicalities in advanced cholangiocarcinoma and other biliary tract cancers. J Clin Med. 2020c;9(9):2854.
  • Ross JS, Wang K, Gay L, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–242.
  • Chabon JJ, Simmons AD, Lovejoy AF, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016Jun;10(7):11815.
  • Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to Abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018;8(4):444–457.
  • Vandekerkhove G, Lavoie JM, Annala M, et al. Plasma ctDNA is a tumor tissue surrogate and enables clinical-genomic stratification of metastatic bladder cancer. Nat Commun. 2021;12(1):184.
  • Zill OA, Greene C, Sebisanovic D, et al. Cell-Free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov. 2015;5(10):1040–1048.
  • Andersen RF, Jakobsen A. Screening for circulating RAS/RAF mutations by multiplex digital PCR. Clin Chim Acta. 2016;458:138–143.
  • Kumari S, Tewari S, Husain N, et al. Quantification of circulating free DNA as a diagnostic marker in gall bladder cancer. Pathol Oncol Res. 2017;23(1):91–97.
  • Mody K, Kasi PM, Yang J, et al. Circulating tumor DNA profiling of advanced biliary tract cancers. JCO Precis Oncol. 2019;3:1–9.
  • Ettrich TJ, Schwerdel D, Dolnik A, et al. Genotyping of circulating tumor DNA in cholangiocarcinoma reveals diagnostic and prognostic information. Sci Rep. 2019;9(1):13261.
  • Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer. 2016;122(24):3838–3847.
  • Shroff RT, Rearden J, Li A, et al. Natural history of patients (pts) with advanced cholangiocarcinoma (CCA) with FGFR2 gene fusion/rearrangement or wild-type (WT) FGFR2. J Clin Oncol. 2021;39(10):4089.
  • Valle JW, Hollebecque A, Furuse J, et al. FOENIX-CCA2 quality of life data for futibatinib-treated intrahepatic cholangiocarcinoma (iCCA) patients with FGFR2 fusions/rearrangements. J Clin Oncol. 2021;39(15_suppl):4097.
  • McSheehy P, Guo PJ, Beebe K, et al. Differential induction of gene expression may explain differences in reported adverse event profiles between the FGFR-inhibitors derazantinib and erdafitinib: an analysis in safety relevant normal tissues from urothelial cancer (UC) patient-derived mouse xenograft (PDX) models. Ann Oncol. 2020;31(suppl_4):S1034–S1051.
  • Mody K, Azad NS, Jain P, et al. Multimodal profiling of biliary tract cancers to detect potentially actionable biomarkers and differences in immune signatures between subtypes. J Clin Oncol. 2021;39(15_suppl):4023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.