941
Views
0
CrossRef citations to date
0
Altmetric
Drug Evaluation

Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia

, , , &
Pages 5-16 | Received 09 Nov 2022, Accepted 23 Jan 2023, Published online: 08 Feb 2023

References

  • Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303(1–2):1–12.
  • Pandolfo M. Friedreich ataxia. Handb Clin Neurol. 2012;103:275–294.
  • Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(S1):3–8.
  • Lynch DR, Schadt K, Kichula E, et al. Friedreich Ataxia: multidisciplinary clinical care. J Multidiscip Healthc. 2021;14:1645–1658.
  • Cossee M, Durr A, Schmitt M, et al. Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol. 1999;45(2):200–206.
  • McDaniel DO, Keats B, Vedanarayanan VV, et al. Sequence variation in GAA repeat expansions may cause differential phenotype display in Friedreich’s ataxia. Mov Disord. 2001;16(6):1153–1158.
  • Bidichandani SI, Ashizawa T, Patel PI. Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am J Hum Genet. 1997;60(5):1251–1256.
  • Harding IH, Lynch DR, Koeppen AH, et al. Central nervous system therapeutic targets in Friedreich ataxia. Hum Gene Ther. 2020;31(23–24):1226–1236.
  • Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol. 2014;5:130.
  • Rötig A, de Lonlay P, Chretien D, et al. Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nat Genet. 1997;17(2):215–217.
  • Musco G, Stier G, Kolmerer B, et al. Towards a structural understanding of Friedreich’s ataxia: the solution structure of frataxin. Structure. 2000;8(7):695–707.
  • Delatycki MB, Camakaris J, Brooks H, et al. Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann Neurol. 1999;45(5):673–675.
  • Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–1175.
  • Monrós E, Moltó MD, Martínez F, et al. Phenotype correlation and intergenerational dynamics of the Friedreich ataxia GAA trinucleotide repeat. Am J Hum Genet. 1997;61(1):101–110.
  • Schulz JB, Dehmer T, Schols L, et al. Oxidative stress in patients with Friedreich ataxia. Neurology. 2000;55(11):1719–1721.
  • Patel M, Isaacs CJ, Seyer L, et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol. 2016;3(9):684–694.
  • Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015;14(2):174–182.
  • Tsou AY, Paulsen EK, Lagedrost SJ, et al. Mortality in Friedreich Ataxia. J Neurol Sci. 2011;307(1–2):46–49.
  • Lynch DR, Regner SR, Schadt KA, et al. Management and therapy for cardiomyopathy in Friedreich’s ataxia. Expert Rev Cardiovasc Ther. 2012;10(6):767–777.
  • Koeppen AH, Ramirez RL, Becker AB, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS One. 2015;10(3):e0116396–e0116396.
  • Dedobbeleer C, Rai M, Donal E, et al. Normal left ventricular ejection fraction and mass but subclinical myocardial dysfunction in patients with Friedreich’s ataxia. Eur Heart J Cardiovasc Imaging. 2011;13(4):346–352.
  • Payne RM, Wagner GR, Maria BL. Cardiomyopathy in Friedreich ataxia: clinical findings and research. J Child Neurol. 2012 September 04ed;27(9):1179–1186.
  • McCormick A, Shinnick J, Schadt K, et al. Cardiac transplantation in Friedreich Ataxia: extended follow-up. J Neurol Sci. 2017;375:471–473.
  • Sedlak TL, Chandavimol M, Straatman L. Cardiac transplantation: a temporary solution for Friedreich’s ataxia-induced dilated cardiomyopathy. J Heart Lung Transplant. 2004;23(11):1304–1306.
  • Ivak P, Zumrová A, Netuka I. Friedreich’s ataxia and advanced heart failure: an ethical conundrum in decision-making. J Heart Lung Transplant. 2016;35(9):1144–1145.
  • Mejia E, Lynch A, Hearle P, et al. Ectopic burden via holter monitors in Friedreich ataxia. Pediatr Neurol. 2021 Jan 23ed;117:29–33.
  • Rummey C, Flynn JM, Corben LA, et al. Scoliosis in Friedreich’s ataxia: longitudinal characterization in a large heterogeneous cohort. Ann Clin Transl Neurol. 2021 May 05ed;8(6):1239–1250.
  • Tsirikos AI, Smith G. Scoliosis in patients with Friedreich’s ataxia. J Bone Joint Surg Br Vol. 2012;94-B(5):684–689.
  • Tamaroff J, DeDio A, Wade K, et al. Friedreich’s Ataxia related Diabetes: epidemiology and management practices. Diabetes Res Clin Pract. 2022 March 14ed;186:109828.
  • Azzi A-S, Cosentino C, Kibanda J, et al. OGTT is recommended for glucose homeostasis assessments in Friedreich ataxia. Ann Clin Transl Neurol. 2018;6(1):161–166.
  • McCormick A, Farmer J, Perlman S, et al. Impact of diabetes in the Friedreich ataxia clinical outcome measures study. Ann Clin Transl Neurol. 2017;4(9):622–631.
  • Pappa A, Häusler MG, Veigel A, et al. Diabetes mellitus in Friedreich Ataxia: a case series of 19 patients from the German-Austrian diabetes mellitus registry. Diabetes Res Clin Pract. 2018;141:229–236.
  • Chakraborty PP, Ray S, Bhattacharjee R, et al. First presentation of diabetes as diabetic ketoacidosis in a case of friedreich’s ataxia. Clin Diabetes. 2015;33(2):84–86.
  • Seyer LA, Galetta K, Wilson J, et al. Analysis of the visual system in Friedreich ataxia. J Neurol. 2013;260(9):2362–2369.
  • Rojas P, de Hoz R, Cadena M, et al. Neuro-ophthalmological findings in friedreich’s ataxia. J Pers Med. 2021;11(8):708.
  • Bogdanova-Mihaylova P, Plapp HM, Chen H, et al. Longitudinal assessment using optical coherence tomography in patients with friedreich’s ataxia. Tomography. 2021;7(4):915–931.
  • Lynch DR, Willi SM, Wilson RB, et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord. 2012;27(8):1026–1033.
  • Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):142–146.
  • Abeti R, Jasoliya M, Al-Mahdawi S, et al. A drug combination rescues frataxin-dependent neural and cardiac pathophysiology in FA models. Front Mol Biosci. 2022;9:830650.
  • Di Prospero NA, Baker A, Jeffries N, et al. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007;6(10):878–886.
  • Kearney M, Orrell RW, Fahey M, et al. Pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev. 2016;2016(8):CD007791.
  • Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol. 2010;67(8):941–947.
  • Wang H, Norton J, Xu L, et al. Results of a randomized double-blind study evaluating luvadaxistat in adults with Friedreich ataxia. Ann Clin Transl Neurol. 2021;8(6):1343–1352.
  • Keita M, McIntyre K, Rodden LN, et al. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag. 2022;12(5):267–283.
  • Cook A, Giunti P. Friedreich’s ataxia: clinical features, pathogenesis and management. Br Med Bull. 2017;124(1):19–30.
  • Reetz K, Hilgers R-D, Isfort S, et al. Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA). Neurol Res Pract. 2019;1(1):33.
  • Kahn-Kirby AH, Amagata A, Maeder CI, et al. Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One. 2019;14(3):e0214250–e0214250.
  • Murase K, Lee L, Ma J, et al. Evaluation of vatiquinone drug-drug interaction potential in vitro and in a phase 1 clinical study with tolbutamide, a CYP2C9 substrate, and omeprazole, a CYP2C19 substrate, in healthy subjects. Eur J Clin Pharmacol. 2022;78(11):1823–1831.
  • Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292(1):C33–C44.
  • PTC Therapeutics. A randomized, parallel-arm, double-blind, placebo-controlled study with open-label extension to assess the efficacy and safety of vatiquinone for the treatment of Friedreich ataxia (MOVE-FA) [Internet]. clinicaltrials.gov; 2022 [cited 2022 Nov 7]. Report No.: NCT04577352. Available from: https://clinicaltrials.gov/ct2/show/NCT04577352.
  • Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171(8):2029–2050.
  • Liu Y, Cai J, Shen J, et al. SS-31 efficacy in a mouse model of Friedreich ataxia by upregulation of frataxin expression. Hum Mol Genet. 2021;31(2):176–188.
  • Johnson J, Mercado-Ayón E, Clark E, et al. Drp1-dependent peptide reverse mitochondrial fragmentation, a homeostatic response in Friedreich ataxia. Pharmacol Res Perspect. 2021;9(3):e00755–e00755.
  • Zhao H, Li H, Hao S, et al. Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci Rep. 2017;7(1):9840.
  • Rodríguez-Pascau L, Britti E, Calap-Quintana P, et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia. Neurobiol Dis. 2021;148:105162.
  • eMascaró. Minoryx’s clinical candidate leriglitazone shows clinical benefit in a proof of concept Phase 2 study in Friedreich´s ataxia [Internet]. 2022 [cited 2022 Nov 8]. Available from: https://www.minoryx.com/media/minoryx%E2%80%99s_clinical_candidate_leriglitazone_shows_clinical_benefit_in_a_proof_of_concept_phase_2_study_in_friedreichs_ataxia/.
  • Pandolfo M, Reetz K, Darling A, et al. Efficacy and safety of leriglitazone in patients with Friedreich ataxia. Neurol Genet. 2022;8(6):e200034.
  • Chiang S, Kalinowski DS, Dharmasivam M, et al. The potential of the novel NAD+ supplementing agent, SNH6, as a therapeutic strategy for the treatment of Friedreich’s ataxia. Pharmacol Res. 2020;155:104680.
  • Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet. 2014;384(9942):504–513.
  • Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight. 2017;2(14):e93885.
  • Lynch DR, Fischbeck KH. Nicotinamide in Friedreich’s ataxia: useful or not? Lancet. 2014;384(9942):474–475.
  • Sahdeo S, Scott BD, McMackin MZ, et al. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich’s ataxia. Hum Mol Genet. 2014;23(25):6848–6862.
  • Shan Y, Schoenfeld RA, Hayashi G, et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid Redox Signal. 2013;19(13):1481–1493.
  • Jasoliya M, Sacca F, Sahdeo S, et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s Ataxia. PLoS One. 2019;14(6):e0217776.
  • Erwin GS, Grieshop MP, Ali A, et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science. 2017 Nov 30ed;358(6370):1617–1622.
  • Design Therapeutics – Our Approach [Internet]. 2022 [cited 2022 Nov 8]. Available from: https://www.designtx.com/our-approach/.
  • Lexeo Therapeutics. A phase 1/2 study of the safety and efficacy of LX2006 gene therapy in participants with cardiomyopathy associated with friedreich’s ataxia [Internet]. clinicaltrials.gov; 2022 [cited 2022 Nov 7]. Report No.: NCT05445323. Available from: https://clinicaltrials.gov/ct2/show/NCT05445323.
  • Vyas PM, Tomamichel WJ, Pride PM, et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2012;21(6):1230–1247.
  • International Congress for Ataxia Research [Internet]. 2022 [cited 2022 Nov 8]. Available from: https://ataxiacongress.org/program.htm.
  • Lynch D Efficacy of omaveloxolone in patients with friedreich’s ataxia: update of the delayed-start study [Internet]. MDA Clinical & Scientific Conference 2023. [ cited 2022 Nov 9]. Available from: https://www.mdaconference.org/abstract-library/efficacy-of-omaveloxolone-in-patients-with-friedreichs-ataxia-update-of-the-delayed-start-study/.
  • Larimar Therapeutics, Inc. A phase 1 single ascending dose study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of Subcutaneous CTI-1601 Versus Placebo in Subjects With Friedreich’s Ataxia [Internet]. clinicaltrials.gov; 2020 [cited 2022 Nov 7]. Report No.: NCT04176991. Available from: https://clinicaltrials.gov/ct2/show/NCT04176991.
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–547.
  • Gérard C, Xiao X, Filali M, et al. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol Ther Methods Clin Dev. 2014;1:14044.
  • Piguet F, de Montigny C, Vaucamps N, et al. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol Ther. 2018 May 28ed;26(8):1940–1952.
  • Salami CO, Jackson K, Jose C, et al. Stress-induced mouse model of the cardiac manifestations of friedreich’s ataxia corrected by AAV-mediated gene therapy. Hum Gene Ther. 2020;31(15–16):819–827.
  • Belbellaa B, Reutenauer L, Monassier L, et al. Correction of half the cardiomyocytes fully rescue Friedreich ataxia mitochondrial cardiomyopathy through cell-autonomous mechanisms. Hum Mol Genet. 2019;28(8):1274–1285.
  • Belbellaa B, Reutenauer L, Messaddeq N, et al. High levels of frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol Ther Methods Clin Dev. 2020;19:120–138.
  • Sivakumar A, Cherqui S. Advantages and limitations of gene therapy and gene editing for friedreich’s ataxia. Front Genome Ed. 2022;4:903139.
  • Mazzara PG, Muggeo S, Luoni M, et al. Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. Nat Commun. 2020;11(1):4178.
  • Rocca CJ, Rainaldi JN, Sharma J, et al. CRISPR-Cas9 gene editing of hematopoietic stem cells from patients with friedreich’s ataxia. Mol Ther Methods Clin Dev. 2020;17:1026–1036.
  • Li J, Rozwadowska N, Clark A, et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich’s ataxia cardiomyocytes. Stem Cell Res. 2019;40:101529.
  • Li Y, Polak U, Bhalla AD, et al. Excision of expanded GAA repeats alleviates the molecular phenotype of friedreich’s ataxia. Mol Ther. 2015;23(6):1055–1065.
  • Abeti R, Uzun E, Renganathan I, et al. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich’s ataxia. Pharmacol Res. 2015;99:344–350.
  • Abeti R, Baccaro A, Esteras N, et al. Novel Nrf2-inducer prevents mitochondrial defects and oxidative stress in friedreich’s ataxia models. Front Cell Neurosci. 2018;12:188.
  • Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47(9):1304–1309.
  • Ghosh D, Levault KR, Brewer GJ. Relative importance of redox buffers GSH and NAD (P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons. Aging Cell. 2014 March 21ed;13(4):631–640.
  • Holmström KM, Kostov RV, Dinkova-Kostova AT. The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol. 2016;1:80–91.
  • Wu KC, Cui JY, Klaassen CD. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci. 2011 September 20ed;123(2):590–600.
  • Hayashi G, Cortopassi G, Fang D. Lymphoblast oxidative stress genes as potential biomarkers of disease severity and drug effect in friedreich’s ataxia. PLoS One. 2016;11(4):e0153574–e0153574.
  • Lynch DR, Farmer J, Hauser L, et al. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann Clin Transl Neurol. 2018;6(1):15–26.
  • Reisman SA, Gahir SS, Lee C-YI, et al. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates. Drug Des Devel Ther. 2019;13:1259–1270.
  • Clark E, Johnson J, Dong YN, et al. Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal. 2018;2(4):NS20180060–NS20180060.
  • Ghanekar SD, Miller WW, Meyer CJ, et al. Orphan drugs in development for the treatment of friedreich’s ataxia: focus on omaveloxolone. Degener Neurol Neuromuscul Dis. 2019;9:103–107.
  • Lynch DR, Chin MP, Delatycki M, et al. Safety and efficacy of omaveloxolone in friedreich’s ataxia (moxie study): a multicentre, randomised, double-blind, placebo-controlled trial. SSRN Electron J. 2020. DOI:10.2139/ssrn.3576913.
  • Lynch DR, Goldsberry A, Rummey C, et al. Direct utility of natural history data in analysis of clinical trials: propensity match-based analysis of Omaveloxolone in Friedreich ataxia using the FA-COMS dataset. 2022. DOI:10.1101/2022.08.12.22278684.
  • Chiang S, Huang MLH, Richardson DR. Treatment of dilated cardiomyopathy in a mouse model of Friedreich’s ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacol Res. 2020;159:104994.
  • A Clinical Drug-Drug. Interaction (DDI) Study With Omaveloxolone. Case Med Res. 2019. DOI:10.31525/ct1-nct04008186.
  • CYTOCHROME P450 DRUG INTERACTION TABLE - Drug Interactions [Internet]. 2022 [cited 2022 Nov 8]. Available from: https://drug-interactions.medicine.iu.edu/MainTable.aspx.
  • Shinnick JE, Schadt K, Strawser C, et al. Comorbid medical conditions in Friedreich ataxia: association with inflammatory bowel disease and growth hormone deficiency. J Child Neurol. 2016;31(9):1161–1165.
  • Reata Pharmaceuticals Inc. Investors - News [Internet]. [ cited 2022 Nov 9]. Available from: https://www.reatapharma.com/investors/news/default.aspx.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.