1,268
Views
0
CrossRef citations to date
0
Altmetric
Review

Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy

, , , , , , , & show all
Pages 723-739 | Received 25 Apr 2023, Accepted 30 Aug 2023, Published online: 21 Sep 2023

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. Ca A Cancer J Clinicians. 2023;73(1):17–48. doi: 10.3322/caac.21763
  • Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016 Jun;5(3):288–300. doi: 10.21037/tlcr.2016.06.07
  • Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022 May 26;386(21):1973–1985. doi: 10.1056/NEJMoa2202170
  • Kudinov AE, Deneka A, Nikonova AS, et al. Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6955–6960. doi: 10.1073/pnas.1513616113
  • Remon J, Vilariño N, Reguart N. Immune checkpoint inhibitors in non-small cell lung cancer (NSCLC): approaches on special subgroups and unresolved burning questions. Cancer Treat Rev. 2018 Mar;64:21–29. doi: 10.1016/j.ctrv.2018.02.002
  • Liu J, Cheng H, Han L, et al. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2018;12:3199–3209. doi: 10.2147/DDDT.S172199
  • Hu Y, Zhang Y, Wang X, et al. Treatment of lung cancer by peptide-modified liposomal irinotecan endowed with tumor penetration and NF-κB inhibitory activities. Mol Pharm. 2020 Oct 5;17(10):3685–3695. doi: 10.1021/acs.molpharmaceut.0c00052
  • Wang H, Lu Z, Wang L, et al. New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity. Cancer Res. 2017 Dec 15;77(24):6963–6974. doi: 10.1158/0008-5472.CAN-17-0984
  • Wang H, Chen J, Xu C, et al. Cancer nanomedicines stabilized by π-π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations. Theranostics. 2017;7(15):3638–3652. doi: 10.7150/thno.20028
  • Li N, Mai Y, Liu Q, et al. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res. 2021 Feb;11(1):131–141. doi: 10.1007/s13346-020-00720-9
  • Gupta A, Ahmad A, Singh H, et al. Nanocarrier composed of magnetite core coated with three polymeric shells mediates LCS-1 delivery for Synthetic lethal therapy of BLM-defective colorectal cancer cells. Biomacromolecules. 2018 Mar 12;19(3):803–815. doi: 10.1021/acs.biomac.7b01607
  • Gupta A, Ahmad A, Dar AI, et al. Synthetic lethality: from research to precision cancer Nanomedicine. Curr Cancer Drug Targets. 2018;18(4):337–346. doi: 10.2174/1568009617666170630141931
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011 Mar 18;63(3):131–135. doi: 10.1016/j.addr.2010.03.011
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008;26(1):57–64. doi: 10.1016/j.urolonc.2007.03.015
  • Ju RJ, Cheng L, Xiao Y, et al. PTD modified paclitaxel anti-resistant liposomes for treatment of drug-resistant non-small cell lung cancer. J Liposome Res. 2018 Sep;28(3):236–248. doi: 10.1080/08982104.2017.1327542
  • Ma D, Han T, Karimian M, et al. Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer. Int j biol macromol. 2020 Dec 15;165(Pt A):767–775. doi: 10.1016/j.ijbiomac.2020.09.193
  • Cao M, Long M, Chen Q, et al. Development of β-elemene and cisplatin co-loaded liposomes for effective lung cancer therapy and evaluation in patient-derived tumor xenografts. Pharm Res. 2019 Jun 18;36(8):121. doi: 10.1007/s11095-019-2656-x
  • Wang R, Sun Y, He W, et al. Pulmonary surfactants affinity pluronic-hybridized liposomes enhance the treatment of drug-resistant lung cancer. Int J Pharm. 2021 Sep 25;607:120973. doi: 10.1016/j.ijpharm.2021.120973
  • Truong TH, Alcantara KP, Bulatao BPI, et al. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym. 2022 Jul 15;288:119401. doi: 10.1016/j.carbpol.2022.119401
  • Abedi Gaballu F, Abbaspour-Ravasjani S, Mansoori B, et al. Comparative of in-vitro evaluation between erlotinib loaded nanostructured lipid carriers and liposomes against A549 lung cancer cell line. Iran J Pharm Res. 2019;18(3):1168–1179. Summer. doi: 10.22037/ijpr.2019.1100775
  • Gupta B, Ramasamy T, Poudel BK, et al. Development of bioactive PEGylated nanostructured platforms for sequential delivery of doxorubicin and imatinib to overcome drug resistance in metastatic tumors. ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9280–9290. doi: 10.1021/acsami.6b09163
  • Han L, Huang R, Liu S, et al. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol Pharm. 2010 Dec 6;7(6):2156–2165. doi: 10.1021/mp100185f
  • Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):129–137. doi: 10.1016/j.addr.2016.01.022
  • Park YI, Kwon SH, Lee G, et al. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J Control Release. 2021 Feb 10;330:1–14. doi: 10.1016/j.jconrel.2020.12.011
  • Knudsen K Bram . In vivo toxicity of cationic micelles and liposomes. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(2):467–477. doi: 10.1016/j.nano.2014.08.004
  • Grace V Mariammal, Wilson D David, Guruvayoorappan C, et al. Liposome nano‐formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH‐responsive carrier for molecular therapeutic drug (all‐ trans retinoic acid) delivery to lung cancer cellsIET Nanobiotechnology. 2021;15(4):380–390. doi: 10.1049/nbt2.12028
  • Zhu HM, He Y, Huang SS, et al. Chlorin e6-loaded sonosensitive magnetic nanoliposomes conjugated with the magnetic field for enhancing anti-tumor effect of sonodynamic therapy. Pharm Dev Technol. 2020 Dec;25(10):1249–1259. doi: 10.1080/10837450.2020.1810274
  • Li J, Gao Y, Liu S, et al. Aptamer-functionalized quercetin thermosensitive liposomes for targeting drug delivery and antitumor therapy. Biomed. Mater.2022;17(6):065003. doi: 10.1088/1748-605X/ac8c75
  • Regenold M, Kaneko K, Wang X, et al. Triggered release from thermosensitive liposomes improves tumor targeting of vinorelbine. J Control Release. 2023; 354:19–33. doi: 10.1016/j.jconrel.2022.12.010
  • Ghosh S, Lalani R, Maiti K, et al. Optimization and efficacy study of synergistic vincristine coloaded liposomal doxorubicin against breast and lung cancer. Nanomedicine (Lond). 2020 Nov;15(26):2585–2607. doi: 10.2217/nnm-2020-0169
  • Zhang Y, Khan AR, Yang X, et al. A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer. J Nanobiotechnology. 2021 Feb 25;19(1):57. doi: 10.1186/s12951-021-00804-9
  • Song Y, Zhou B, Du X, et al. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother. 2020 May;125:109561.
  • Zare Kazemabadi F, Heydarinasab A, Akbarzadeh A, et al. Preparation, characterization and in vitro evaluation of PEGylated nanoliposomal containing etoposide on lung cancer. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):3222–3230. doi: 10.1080/21691401.2019.1646265
  • Tian Y, Zhang H, Qin Y, et al. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm. 2018 Dec;44(12):2071–2082. doi: 10.1080/03639045.2018.1512613
  • Kong L, Zhang SM, Chu JH, et al. Tumor microenvironmental responsive liposomes simultaneously encapsulating biological and chemotherapeutic drugs for enhancing antitumor efficacy of NSCLC. Int J Nanomedicine. 2020;15:6451–6468. doi: 10.2147/IJN.S258906
  • Kong L, Cai FY, Yao XM, et al. RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci. 2020 Feb;111(2):621–636. doi: 10.1111/cas.14256
  • Zhou X, Liu HY, Zhao H, et al. RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. Onco Targets Ther. 2018;11:5397–5405. doi: 10.2147/OTT.S169555
  • Liao L, Cen B, Li G, et al. A bivalent cyclic RGD-siRNA conjugate enhances the antitumor effect of apatinib via co-inhibiting VEGFR2 in non-small cell lung cancer xenografts. Drug Deliv. 2021 Dec;28(1):1432–1442. doi: 10.1080/10717544.2021.1937381
  • Wang G, Wang Z, Li C, et al. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018 Oct;106:275–284.
  • Pirooznia N, Abdi K, Beiki D, et al. (177)Lu-labeled cyclic RGD peptide as an imaging and targeted radionuclide therapeutic agent in non-small cell lung cancer: biological evaluation and preclinical study. Bioorg Chem. 2020 Sep;102:104100.
  • Jiang Q, Yuan Y, Gong Y, et al. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J Cancer Res Clin Oncol. 2019 Dec;145(12):2951–2967. doi: 10.1007/s00432-019-03051-6
  • Riaz MK, Zhang X, Wong KH, et al. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine. 2019;14:2879–2902. doi: 10.2147/IJN.S192219
  • Luo X, Hu L, Zheng H, et al. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)-octadecylamine conjugate for lung cancer treatment. Drug Deliv. 2018 Nov;25(1):1200–1212. doi: 10.1080/10717544.2018.1474973
  • Jiménez-López J, Bravo-Caparrós I, Cabeza L, et al. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed Pharmacother. 2021 Jan;133:111059.
  • Parvathaneni V, Kulkarni NS, Shukla SK, et al. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics. 2020 Feb 28;12(3):206. doi: 10.3390/pharmaceutics12030206
  • Tie Y, Zheng H, He Z, et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target Ther. 2020 Jan 22;5(1):6. doi: 10.1038/s41392-020-0115-0
  • Kumar R, Santa Chalarca CF, Bockman MR, et al. Polymeric delivery of therapeutic nucleic acids. Chem Rev. 2021 Sep 22;121(18):11527–11652. doi: 10.1021/acs.chemrev.0c00997
  • Ghazani AA, Castro CM, Gorbatov R, et al. Sensitive and direct detection of circulating tumor cells by multimarker µ-nuclear magnetic resonance. Neoplasia. 2012 May;14(5):388–395. doi: 10.1596/neo.12696
  • Heller G, McCormack R, Kheoh T, et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-specific antigen across five randomized Phase III clinical trials. J Clin Oncol. 2018 Feb 20;36(6):572–580. doi: 10.1200/JCO.2017.75.2998
  • Cui S, Ni Y, Zhao Y, et al. Epidermal growth factor receptor-targeted immunomagnetic liposomes for circulating tumor cell enumeration in non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors. Lung Cancer. 2019 Jun;132:45–53.
  • Grace VB, Viswanathan S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J Drug Delivery Sci Technol. 2017;39:223–236. doi: 10.1016/j.jddst.2017.04.005
  • Loira-Pastoriza C, Vanvarenberg K, Ucakar B, et al. Encapsulation of a CpG oligonucleotide in cationic liposomes enhances its local antitumor activity following pulmonary delivery in a murine model of metastatic lung cancer. Mater Sci Eng C Mater Biol Appl. 2021. doi: 10.1016/j.ijpharm.2021.120504
  • Li XT, Zhou ZY, Jiang Y, et al. Pegylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J Drug Target. 2015 Apr;23(3):232–243. doi: 10.3109/1061186X.2014.979829
  • Xiao Z, Zhuang B, Zhang G, et al. Pulmonary delivery of cationic liposomal hydroxycamptothecin and 5-aminolevulinic acid for chemo-sonodynamic therapy of metastatic lung cancer. Int J Pharm. 2021 May 15;601:120572. doi: 10.1016/j.ijpharm.2021.120572
  • Ren J, Yu C, Wu S, et al. Cationic liposome mediated delivery of FUS1 and hIL-12 coexpression plasmid demonstrates enhanced activity against human lung cancer. Curr Cancer Drug Targets. 2014;14(2):167–180. doi: 10.2174/1568009614666140113115651
  • Shim G, Choi HW, Lee S, et al. Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Mol Ther. 2013 Apr;21(4):816–824. doi: 10.1038/mt.2013.10
  • He K, Liu J, Gao Y, et al. Preparation and evaluation of stearylamine-bearing pemetrexed disodium-loaded cationic liposomes in vitro and in vivo. AAPS Pharm Sci Tech. 2020 Jul 13;21(5):193. doi: 10.1208/s12249-019-1586-6
  • Yung BC, Li J, Zhang M, et al. Lipid nanoparticles composed of quaternary amine-tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of AntimiR-21 for lung cancer. Mol Pharm. 2016 Feb 1;13(2):653–662. doi: 10.1021/acs.molpharmaceut.5b00878
  • Wang RH, Cao HM, Tian ZJ, et al. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol Rep. 2017 Nov;38(5):3285. doi: 10.3892/or.2017.6006
  • Xiong Y, Zhao Y, Miao L, et al. Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Control Release. 2016 Dec 28;244(Pt A):63–73. doi: 10.1016/j.jconrel.2016.11.005
  • García-Jimeno S, Estelrich J, Callejas-Fernández J, et al. Reversible and irreversible aggregation of magnetic liposomes. Nanoscale. 2017 Oct 12;9(39):15131–15143. doi: 10.1039/C7NR05301K
  • Liu KC, Arivajiagane A, Wu SJ, et al. Development of a novel thermal-sensitive multifunctional liposome with antibody conjugation to target EGFR-expressing tumors. Nanomedicine. 2019 Jan;15(1):285–294. doi: 10.1016/j.nano.2018.10.006
  • Cao Y, Yi J, Yang X, et al. Efficient cancer regression by a thermosensitive liposome for photoacoustic imaging-guided photothermal/chemo combinatorial therapy. Biomacromolecules. 2017 Aug 14;18(8):2306–2314. doi: 10.1021/acs.biomac.7b00464
  • Xu L, Zhang W, Park HB, et al. Indocyanine green and poly I: C containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. J Immunother Cancer. 2019 Aug 14;7(1):220. doi: 10.1186/s40425-019-0702-1
  • Shen S, Huang D, Cao J, et al. Magnetic liposomes for light-sensitive drug delivery and combined photothermal-chemotherapy of tumors. J Mater Chem B. 2019 Feb 21;7(7):1096–1106. doi: 10.1039/C8TB02684J
  • Gheybi F, Alavizadeh SH, Rezayat SM, et al. pH-Sensitive PEGylated liposomal silybin: synthesis, in vitro and in vivo anti-tumor evaluation. J Pharm Sci. 2021 Dec;110(12):3919–3928. doi: 10.1016/j.xphs.2021.08.015
  • Men W, Zhu P, Dong S, et al. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv. 2020 Dec;27(1):180–190. doi: 10.1080/10717544.2019.1709922
  • Seidi F, Jenjob R, Crespy D. Designing smart polymer conjugates for controlled release of payloads. Chem Rev. 2018 Apr 11;118(7):3965–4036. doi: 10.1021/acs.chemrev.8b00006
  • Zs A, Ql A, Lin M. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin Chem Lett. 2020;31(6):1345–1356. doi: 10.1016/j.cclet.2020.03.001
  • Onodera R, Morioka S, Unida S, et al. Design and evaluation of folate-modified liposomes for pulmonary administration in lung cancer therapy. Eur J Pharm Sci. 2022 Jan 1;168:106081. doi: 10.1016/j.ejps.2021.106081
  • Shen Q, Shen Y, Jin F, et al. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res. 2020 Mar;30(1):12–20. doi: 10.1080/08982104.2019.1579838
  • Ma Z, Wong SW, Forgham H, et al. Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth. Biomaterials. 2022 Jun;285:121539. doi: 10.1016/j.biomaterials.2022.121539.
  • Chen S, Ji X, Zhao M, et al. Construction of chitooligosaccharide-based nanoparticles of pH/redox cascade responsive for co-loading cyclosporin a and AZD9291. Carbohydr Polym. 2022 Sep 1;291:119619. doi: 10.1016/j.carbpol.2022.119619
  • Gu W, Meng F, Haag R, et al. Actively targeted nanomedicines for precision cancer therapy: concept, construction, challenges and clinical translation. J Control Release. 2021 Jan 10;329:676–695. doi: 10.1016/j.jconrel.2020.10.003
  • Sun Y, Sha Y, Cui G, et al. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev. 2023 Jan;192:114624.
  • Wang Y, Yu H, Wang S, et al. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111442.
  • Zheng K, Huang Z, Huang J, et al. Effect of a 2-HP-β-cyclodextrin formulation on the biological transport and delivery of chemotherapeutic PLGA nanoparticles. Drug Des Devel Ther. 2021;15:2605–2618. doi: 10.2147/DDDT.S314361
  • Patel V, Lalani R, Vhora I, et al. Co-delivery of cisplatin and siRNA through hybrid nanocarrier platform for masking resistance to chemotherapy in lung cancer. Drug Deliv Transl Res. 2021 Oct;11(5):2052–2071. doi: 10.1007/s13346-020-00867-5
  • Kaczmarek JC, Patel AK, Rhym LH, et al. Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials. 2021 Aug;275:120966.
  • Park J, Jo S, Lee YM, et al. Enzyme-triggered disassembly of polymeric micelles by controlled depolymerization via cascade cyclization for anticancer drug delivery. ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8060–8070. doi: 10.1021/acsami.0c22644
  • Zou Y, Fang Y, Meng H, et al. Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: a robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. J Control Release. 2016 Dec 28;244(Pt B):326–335. doi: 10.1016/j.jconrel.2016.05.060
  • Yang W, Xia Y, Fang Y, et al. Selective cell penetrating peptide-functionalized polymersomes mediate efficient and targeted delivery of methotrexate disodium to human lung cancer in vivo. Adv Healthc Mater. 2018 Apr;7(7):e1701135. doi: 10.1002/adhm.201701135
  • Lu L, Zou Y, Yang W, et al. Anisamide-decorated pH-Sensitive degradable chimaeric polymersomes mediate potent and targeted protein delivery to lung cancer cells. Biomacromolecules. 2015 Jun 8;16(6):1726–1735. doi: 10.1021/acs.biomac.5b00193
  • Sun M, He L, Fan Z, et al. Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials. 2020 Oct;257:120252. doi: 10.1016/j.biomaterials.2020.120252.
  • Zhang P, Zhang L, Wang J, et al. An intelligent hypoxia-relieving chitosan-based nanoplatform for enhanced targeted chemo-sonodynamic combination therapy on lung cancer. Carbohydr Polym. 2021 Nov 15;274:118655. doi: 10.1016/j.carbpol.2021.118655
  • Viswanadh MK, Mehata AK, Sharma V, et al. Bioadhesive chitosan nanoparticles: dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr Polym. 2021 Nov 15;274:118617. doi: 10.1016/j.carbpol.2021.118617
  • Ding J, Guo Y, Jiang X, et al. Polysaccharides derived from Saposhnikovia divaricata May suppress breast cancer through activating macrophages. Onco Targets Ther. 2020;13:10749–10757. doi: 10.2147/OTT.S267984
  • Zhang L, Wang J, Zhang Y, et al. Indocyanine green-encapsulated erlotinib modified chitosan nanoparticles for targeted chemo-photodynamic therapy of lung cancer cells. Dyes Pigments. 2019;170:107588. doi: 10.1016/j.dyepig.2019.107588
  • Huang G, Chen Q, Hu J, et al. Chitosan-derived nanoparticles impede signal transduction in T790M lung cancer therapy. Biomater Sci. 2021 Nov 9;9(22):7412–7419. doi: 10.1039/D1BM01133B
  • Wei Y, Li X, Sun X, et al. Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO(2)/ionic liquids doped with carboxymethyl chitosan complex. Biosens Bioelectron. 2017 Aug 15;94:141–147. doi: 10.1016/j.bios.2017.03.001
  • Chen M, Runge T, Wang L, et al. Hydrogen bonding impact on chitosan plasticization. Carbohydr Polym. 2018 Nov 15;200:115–121. doi: 10.1016/j.carbpol.2018.07.062
  • Huang G, Chen Q, Wu W, et al. Reconstructed chitosan with alkylamine for enhanced gene delivery by promoting endosomal escape. Carbohydr Polym. 2020 Jan 1;227:115339. doi: 10.1016/j.carbpol.2019.115339
  • Fang H, Zhao X, Gu X, et al. CD44-targeted multifunctional nanomedicines based on a single-component hyaluronic acid conjugate with all-natural precursors: construction and treatment of metastatic breast tumors in vivo. Biomacromolecules. 2020 Jan 13;21(1):104–113. doi: 10.1021/acs.biomac.9b01012
  • Safdar MH, Hussain Z, Abourehab MAS, et al. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1967–1980. doi: 10.1080/21691401.2017.1397001
  • Cano ME, Lesur D, Bincoletto V, et al. Synthesis of defined oligohyaluronates-decorated liposomes and interaction with lung cancer cells. Carbohydr Polym. 2020 Nov 15;248:116798. doi: 10.1016/j.carbpol.2020.116798
  • Liu X, Cheng X, Wang F, et al. Targeted delivery of SNX-2112 by polysaccharide-modified graphene oxide nanocomposites for treatment of lung cancer. Carbohydr Polym. 2018 Apr 1;185:85–95. doi: 10.1016/j.carbpol.2018.01.014
  • Chen D, Zhang P, Li M, et al. Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy. Drug Deliv. 2022 Dec;29(1):574–587. doi: 10.1080/10717544.2022.2032874
  • Chen Y, Su J, Dong W, et al. Cyclodextrin-based metal-organic framework nanoparticles as superior carriers for curcumin: study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chem. 2022 Jul 30;383:132605. doi: 10.1016/j.foodchem.2022.132605
  • Webber MJ, Langer R. Drug delivery by supramolecular design. Chem Soc Rev. 2017 Oct 30;46(21):6600–6620. doi: 10.1039/C7CS00391A
  • Chen X, Guo T, Zhang K, et al. Simultaneous improvement to solubility and bioavailability of active natural compound isosteviol using cyclodextrin metal-organic frameworks. Acta Pharm Sin B. 2021 Sep;11(9):2914–2923. doi: 10.1016/j.apsb.2021.04.018
  • Guimaraes PPG, Tan M, Tammela T, et al. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release. 2018 Nov 28;290:75–87. doi: 10.1016/j.jconrel.2018.09.025
  • Motwani SK, Chopra S, Talegaonkar S, et al. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008 Mar;68(3):513–525. doi: 10.1016/j.ejpb.2007.09.009
  • Sohail R, Abbas SR. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int j biol macromol. 2020 Jun 15;153:36–45. doi: 10.1016/j.ijbiomac.2020.02.191
  • Yalcin TE, Ilbasmis-Tamer S, Takka S. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): in vitro and in vivo. Int J Pharm. 2020 Apr 30;580:119246. doi: 10.1016/j.ijpharm.2020.119246
  • Liu JP, Wang TT, Wang DG, et al. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacol Sin. 2017 Jan;38(1):1–8. doi: 10.1038/aps.2016.84
  • Nooli M, Chella N, Kulhari H, et al. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation. Drug Dev Ind Pharm. 2017 Apr;43(4):611–617. doi: 10.1080/03639045.2016.1275666
  • He W, Xiao W, Zhang X, et al. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer. Int J Nanomedicine. 2020;15:779–793. doi: 10.2147/IJN.S229576
  • Wang S, Gou J, Wang Y, et al. Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomedicine. 2021;16:2357–2372. doi: 10.2147/IJN.S290263
  • Guo B, Wei J, Wang J, et al. CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Acta Biomater. 2022 Jun;145:200–209.
  • Sang X, Yang Q, Shi G, et al. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:727–733. doi: 10.1016/j.msec.2018.06.012
  • Zou Y, Sun Y, Guo B, et al. α(3)β(1) Integrin-targeting polymersomal docetaxel as an advanced nanotherapeutic for nonsmall cell lung cancer treatment. ACS Appl Mater Interfaces. 2020 Apr 1;12(13):14905–14913. doi: 10.1021/acsami.0c01069
  • Zou Y, Wei J, Xia Y, et al. Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin. Signal Transduct Target Ther. 2018;3(1):32. doi: 10.1038/s41392-018-0032-7
  • Yang W, Yang L, Xia Y, et al. Lung cancer specific and reduction-responsive chimaeric polymersomes for highly efficient loading of pemetrexed and targeted suppression of lung tumor in vivo. Acta Biomater. 2018 Apr 1;70:177–185. doi: 10.1016/j.actbio.2018.01.015
  • Kousalová J, Etrych T. Polymeric nanogels as drug delivery systems. Physiol Res. 2018 Oct 30;67(Suppl 2):S305–s317. doi: 10.33549/physiolres.933979
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015 Mar;6(2):105–121. doi: 10.1016/j.jare.2013.07.006
  • Faraji N, Esrafili A, Esfandiari B, et al. Synthesis of pH-sensitive hyaluronic acid nanogels loaded with paclitaxel and interferon gamma: characterization and effect on the A549 lung carcinoma cell line. Colloids Surf B Biointerfaces. 2021 Sep;205:111845.
  • Shim J, Kang J, Yun SI. Chitosan-dipeptide hydrogels as potential anticancer drug delivery systems. Int j biol macromol. 2021 Sep 30;187:399–408. doi: 10.1016/j.ijbiomac.2021.07.134
  • Sano CD, D’Anna C, Scurria A, et al. Mesoporous silica particles functionalized with newly extracted fish oil (Omeg@silica) inhibit lung cancer cell growth. Nanomedicine (Lond). 2021 Oct;16(23):2061–2074. doi: 10.2217/nnm-2021-0202
  • Reczyńska K, Marszałek M, Zarzycki A, et al. Superparamagnetic iron oxide nanoparticles modified with silica layers as potential agents for lung cancer treatment. Nanomaterials (Basel). 2020 May 31;10(6):1076. doi: 10.3390/nano10061076
  • Ioniţă S, Lincu D, Mitran RA, et al. Resveratrol encapsulation and release from pristine and functionalized mesoporous silica carriers. Pharmaceutics. 2022 Jan 16;14(1):203. doi: 10.3390/pharmaceutics14010203
  • Zhang XK, Wang QW, Xu YJ, et al. Co-delivery of cisplatin and oleanolic acid by silica nanoparticles-enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J Med Sci. 2021 Jun;37(6):505–512. doi: 10.1002/kjm2.12365
  • Rong J, Li P, Ge Y, et al. Histone H2A-peptide-hybrided upconversion mesoporous silica nanoparticles for bortezomib/p53 delivery and apoptosis induction. Colloids Surf B Biointerfaces. 2020 Feb;186:110674.
  • Franco S, Noureddine A, Guo J, et al. Direct Transfer of mesoporous silica nanoparticles between macrophages and cancer cells. Cancers (Basel). 2020 Oct 9;12(10):2892. doi: 10.3390/cancers12102892
  • Chen MH, Hanagata N, Ikoma T, et al. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment. Acta Biomater. 2016 Jun;37:165–173.
  • Xiong H, Du S, Zhang P, et al. Primary tumor and pre-metastatic niches co-targeting “peptides-lego” hybrid hydroxyapatite nanoparticles for metastatic breast cancer treatment. Biomater Sci. 2018 Sep 25;6(10):2591–2604. doi: 10.1039/C8BM00706C
  • Wang X, Li X, Ito A, et al. Rod-shaped and fluorine-substituted hydroxyapatite free of molecular immunopotentiators stimulates anti-cancer immunity in vivo. Chem Commun (Camb). 2016 Jun 4;52(44):7078–7081. doi: 10.1039/C6CC02848A
  • Tseng CL, Chen JC, Wu YC, et al. Development of lattice-inserted 5-fluorouracil-hydroxyapatite nanoparticles as a chemotherapeutic delivery system. J Biomater Appl. 2015 Oct;30(4):388–397. doi: 10.1177/0885328215588307
  • Li G, Tang D, Wang D, et al. Effective chemotherapy of lung cancer using bovine serum albumin-coated hydroxyapatite nanoparticles. Med Sci Monit. 2020 May 4;26:e919716. doi: 10.12659/MSM.919716
  • Wu YN, Yang LX, Shi XY, et al. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials. 2011 Jul;32(20):4565–4573. doi: 10.1016/j.biomaterials.2011.03.006
  • Sun Y, Chen Y, Ma X, et al. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25680–25690. doi: 10.1021/acsami.6b06094
  • Liu J, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci. 2020 Dec 23;6(12):2179–2195. doi: 10.1021/acscentsci.0c01306
  • Danafar H, Salehiabar M, Barsbay M, et al. Curcumin delivery by modified biosourced carbon-based nanoparticles. Nanomedicine (Lond). 2022 Jan;17(2):95–105. doi: 10.2217/nnm-2021-0225
  • Barahuie F, Saifullah B, Dorniani D, et al. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:177–185. doi: 10.1016/j.msec.2016.11.114
  • Rosli NF, Fojtů M, Fisher AC, et al. Graphene oxide nanoplatelets potentiate anticancer effect of cisplatin in human lung cancer cells. Langmuir. 2019 Feb 26;35(8):3176–3182. doi: 10.1021/acs.langmuir.8b03086
  • Zhao X, Yang L, Li X, et al. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconjug Chem. 2015 Jan 21;26(1):128–136. doi: 10.1021/bc5005137
  • Shih CY, Huang WL, Chiang IT, et al. Biocompatible hole scavenger-assisted graphene oxide dots for photodynamic cancer therapy. Nanoscale. 2021 May 13;13(18):8431–8441. doi: 10.1039/D1NR01476E
  • Zhu J, Xu M, Gao M, et al. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano. 2017 Mar 28;11(3):2637–2651. doi: 10.1021/acsnano.6b07311
  • Chen Q, Chen Z, Liu D, et al. Constructing an E-Nose using metal-ion-induced assembly of graphene oxide for diagnosis of lung cancer via exhaled breath. ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17713–17724. doi: 10.1021/acsami.0c00720
  • Li T, Liu H, Xi G, et al. One-step reduction and PEIylation of PEGylated nanographene oxide for highly efficient chemo-photothermal therapy. J Mater Chem B. 2016 May 7;4(17):2972–2983. doi: 10.1039/C6TB00486E
  • Khan M, Khan M, Al-Marri AH, et al. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer. Int J Nanomedicine. 2016;11:873–883. doi: 10.2147/IJN.S100903
  • Wei X, Li P, Zhou H, et al. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. J Photochem Photobiol B. 2021 Mar;216:112125.
  • Das M, Datir SR, Singh RP, et al. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol Pharm. 2013 Jul 1;10(7):2543–2557. doi: 10.1021/mp300701e
  • Singh RP, Sharma G, Sonali S, et al. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:446–458. doi: 10.1016/j.msec.2017.03.225
  • Gisbert-Garzarán M, Berkmann JC, Giasafaki D, et al. Engineered pH-Responsive mesoporous carbon nanoparticles for drug delivery. ACS Appl Mater Interfaces. 2020 Apr 1;12(13):14946–14957. doi: 10.1021/acsami.0c01786
  • Tian H, Zhang R, Li J, et al. A novel yolk–shell Fe3O4@ mesoporous carbon nanoparticle as an effective tumor-targeting nanocarrier for improvement of chemotherapy and photothermal therapy. Int J Mol Sci. 2022 Jan 30;23(3):1623. doi: 10.3390/ijms23031623
  • Pandurangan M, Enkhtaivan G, Kim DH. Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. J Photochem Photobiol B. 2016 May;158:206–211. doi: 10.1016/j.jphotobiol.2016.03.002
  • Zangeneh M, Nedaei HA, Mozdarani H, et al. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109739.
  • Hira I, Kumar A, Kumari R, et al. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. Mater Sci Eng C Mater Biol Appl. 2018 Sep 1;90:494–503. doi: 10.1016/j.msec.2018.04.085
  • Wu D, Wang W, He X, et al. Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells. Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:827–832.
  • Reczyńska K, Marchwica P, Khanal D, et al. Stimuli-sensitive fatty acid-based microparticles for the treatment of lung cancer. Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110801.
  • Liang L, Wen L, Weng Y, et al. Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer. Chem Eng J. 2021;425:131451. doi: 10.1016/j.cej.2021.131451
  • Rosière R, Van Woensel M, Gelbcke M, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018 Mar 5;15(3):899–910. doi: 10.1021/acs.molpharmaceut.7b00846