47
Views
2
CrossRef citations to date
0
Altmetric
Review

From bench to bedside - is there a role of IL-17 drugs in rheumatoid arthritis?

ORCID Icon, , ORCID Icon, , &
Pages 591-600 | Received 09 Jan 2024, Accepted 01 May 2024, Published online: 09 May 2024

References

  • de Hair MJH, Jacobs JWG, Schoneveld JLM, et al. Difficult-to-treat rheumatoid arthritis: an area of unmet clinical need. Rheumatology. 2018 [cited 2023 Dec 2];57:1135–1144. doi: 10.1093/rheumatology/kex349
  • Singh JA, Cameron C, Noorbaloochi S, et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet. 2015 [cited 2023 Dec 2];386(9990):258–265. doi: 10.1016/S0140-6736(14)61704-9
  • Pundole X, Suarez-Almazor ME. Cancer and rheumatoid arthritis. Rheum Dis Clin North Am. 2020 [cited 2023 Dec 2];46(3):445–462. doi: 10.1016/j.rdc.2020.05.003
  • Huangfu L, Li R, Huang Y, et al. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther. 2023 [cited 2023 Nov 5];8(1):402. doi: 10.1038/s41392-023-01620-3
  • Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023 [cited 2023 Oct 31];23(1):38–54. doi: 10.1038/s41577-022-00746-9
  • Brembilla NC, Senra L, Boehncke W-H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol. 2018 [cited 2023 Nov 4];9. doi: 10.3389/fimmu.2018.01682
  • Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009 [cited 2024 Jan 5];361(9):888–898. doi: 10.1056/NEJMra0707449
  • Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999 [cited 2023 Nov 5];103(9):1345–1352. doi: 10.1172/JCI5703
  • Eljaafari A, Tartelin M, Aissaoui H, et al. Bone marrow–derived and synovium‐derived mesenchymal cells promote Th17 cell expansion and activation through caspase 1 activation: contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum. 2012 [cited 2023 Dec 22];64(7):2147–2157. doi: 10.1002/art.34391
  • Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42(5):963–970. Available from: https://onlinelibrary.wiley.com/doi/10.1002/1529-0131(199905)42:5%3C963:AID-ANR15%3E3.0.CO;2-E
  • Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Front Med. 2019 [cited 2023 Oct 31];5:437117. doi: 10.3389/fmed.2018.00364
  • Honorati MC, Neri S, Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthr Cartil. 2006 [cited 2023 Dec 22];14(4):345–352. doi: 10.1016/j.joca.2005.10.004
  • Toh M-L, Gonzales G, Koenders MI, et al. Role of interleukin 17 in Arthritis Chronicity through Survival of Synoviocytes via Regulation of Synoviolin Expression. Unutmaz D, editor. PLOS ONE. 2010 [cited 2023 Dec 22];5(10):e13416. Available from: https://pubmed.ncbi.nlm.nih.gov/20976214/
  • Van Bezooijen R, Papapoulos S, Löwik CWG. Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: is there dependency on nuclear factor-κB and receptor activator of nuclear factor κB (RANK)/RANK ligand signaling? Bone. 2001 [cited 2023 Dec 22];28(4):378–386. doi: 10.1016/S8756-3282(00)00457-9
  • Lubberts E, Joosten LAB, Oppers B, et al. IL-1-Independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol. 2001 [cited 2023 Nov 5];167:1004–1013. doi: 10.4049/jimmunol.167.2.1004
  • Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-Deficient mice. J Immunol. 2003 [cited 2023 Nov 5];171(11):6173–6177. doi: 10.4049/jimmunol.171.11.6173
  • Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006 [cited 2023 Nov 5];203(12):2673–2682. doi: 10.1084/jem.20061775
  • Lubberts E, Koenders MI, Oppers‐Walgreen B, et al. Treatment with a neutralizing anti‐murine interleukin‐17 antibody after the onset of collagen‐induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004 [cited 2023 Nov 5];50(2):650–659. doi: 10.1002/art.20001
  • Ziolkowska M, Koc A, Luszczykiewicz G, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol. 2000 [cited 2023 Nov 5];164(5):2832–2838. doi: 10.4049/jimmunol.164.5.2832
  • Kirkham BW, Lassere MN, Edmonds JP, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two‐year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006 [cited 2023 Nov 5];54(4):1122–1131. doi: 10.1002/art.21749
  • Metawi SA, Abbas D, Kamal MM, et al. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin Rheumatol. 2011 [cited 2023 Nov 5];30(9):1201–1207. doi: 10.1007/s10067-011-1737-y
  • Tucker L, Allen A, Chandler D, et al. The 2022 British Society for Rheumatology guideline for the treatment of psoriatic arthritis with biologic and targeted synthetic DMARDs. Rheumatology. 2022 [cited 2024 Jan 4];61:e255–e266. doi: 10.1093/rheumatology/keac295
  • National Institute for Health and Care Excellence (NICE). Bimekizumab for treating axial spondyloarthritis | technology appraisal guidance [TA918]. NICE; 2023 [cited 2024 Jan 4]. Available from: https://www.nice.org.uk/guidance/ta918
  • National Institute for Health and Care Excellence (NICE). Bimekizumab for treating active psoriatic arthritis |Technology appraisal guidance [TA916] [internet]. NICE; 2023 [cited 2024 Jan 4]. Available from: https://www.nice.org.uk/guidance/ta916
  • Aboobacker S, Kurn H, Al Aboud AM. Secukinumab [Internet]. In: StatPearls. StatPearls Publishing; 2023 [cited 2023 Dec 7]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537091/
  • Tahir H, Deodhar A, Genovese M, et al. Secukinumab in Active Rheumatoid Arthritis after anti-TNFα therapy: a randomized, double-blind placebo-controlled phase 3 study. Rheumatol Ther. 2017 [cited 2023 Oct 30];4:475–488. doi: 10.1007/s40744-017-0086-y
  • Preuss CV, Quick J. Ixekizumab. Turkderm Turkish Arch Dermatology Venereol. 2023 [cited 2023 Dec 15];56:55–57. Available from: https://www.ncbi.nlm.nih.gov/books/NBK431088/
  • Reich K, Warren RB, Lebwohl M, et al. Bimekizumab versus secukinumab in plaque psoriasis. N Engl J Med. 2021 [cited 2023 Nov 15];385(2):142–152. doi: 10.1056/NEJMoa2102383
  • Khatri A, Goss S, Jiang P, et al. Pharmacokinetics of ABT-122, a TNF-α- and IL-17A-Targeted dual-variable domain Immunoglobulin, in healthy subjects and patients with rheumatoid arthritis: results from three phase I trials. Clin Pharmacokinet. 2018 [cited 2024 Jan 4];57(5):613–623. doi: 10.1007/s40262-017-0580-y
  • Fleischmann RM, Wagner F, Kivitz AJ, et al. Safety, tolerability, and pharmacodynamics of ABT -122, a tumor necrosis factor– and interleukin-17–Targeted dual variable domain immunoglobulin, in patients with rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ). 2017 [cited 2024 Jan 4];69(12):2283–2291. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/art.40319
  • Simsek I. TNF inhibitors - new and old agents for rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2010;68(3):204–210. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20969553
  • Golbari NM, Basehore BM, Zito PM. Brodalumab [Internet]. In: StatPearls. StatPearls Publishing; 2023 [cited 2023 Dec 7]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470324/
  • Foulkes AC, Warren RB. Brodalumab in psoriasis: evidence to date and clinical potential. Drugs Context. 2019 [cited 2024 Jan 4];8:1–11. Available from: https://www/pmc/articles/PMC6474429/
  • Mease PJ, Jeka S, Jaller JJ, et al. CNTO6785, a fully human antiinterleukin 17 monoclonal antibody, in patients with rheumatoid arthritis with inadequate response to methotrexate: a randomized, placebo-controlled, phase II, dose-ranging study. J Rheumatol. 2018 [cited 2024 Jan 4];45:22–31. Available from: https://www.jrheum.org/content/45/1/22
  • Tlustochowicz W, Rahman P, Seriolo B, et al. Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: results from a randomized phase II study. J Rheumatol. 2016 [cited 2023 Oct 30];43:495–503. Available from: https://pubmed.ncbi.nlm.nih.gov/26834211/
  • Hueber W, Patel DD, Dryja T, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010 [cited 2023 Dec 22];2(52):52ra72. doi: 10.1126/scitranslmed.3001107
  • Genovese MC, Durez P, Richards HB, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013 [cited 2023 Oct 30];72(6):863–869. doi: 10.1136/annrheumdis-2012-201601
  • Genovese MC, Durez P, Richards HB, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014 [cited 2023 Oct 30];41(3):414–421. doi: 10.3899/jrheum.130637
  • Blanco FJ, Möricke R, Dokoupilova E, et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, Active comparator– and placebo-controlled study. Arthritis Rheumatol (Hoboken, NJ). 2017 [cited 2023 Oct 30];69(6):1144–1153. Available from: https://pubmed.ncbi.nlm.nih.gov/28217871/
  • Dokoupilová E, Aelion J, Takeuchi T, et al. Secukinumab after anti-tumour necrosis factor-α therapy: a phase III study in active rheumatoid arthritis. Scand J Rheumatol. 2018 [cited 2023 Dec 22];47(4):276–281. doi: 10.1080/03009742.2017.1390605
  • Genovese MC, Van Den Bosch F, Roberson SA, et al. LY2439821, a humanized anti–interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum. 2010;62(4):929–939. doi: 10.1002/art.27334
  • ClinicalTrials.gov [Internet]. A study in rheumatoid arthritis (NCT01253265). 2010 [cited 2023 Dec 22]. Available from: https://clinicaltrials.gov/study/NCT01253265
  • ClinicalTrials.gov [Internet]. A study of LY2439821 in rheumatoid arthritis (NCT01236118). 2010 [cited 2023 Dec 22]. Available from: https://clinicaltrials.gov/study/NCT01236118
  • Genovese MC, Greenwald M, Cho C, et al. A phase II randomized study of subcutaneous ixekizumab, an anti–Interleukin‐17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014;66(7):1693–1704. Available from: https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/art.38617
  • Genovese MC, Braun DK, Erickson JS, et al. Safety and efficacy of open-label subcutaneous ixekizumab treatment for 48 weeks in a phase II study in biologic-naive and TNF-IR patients with rheumatoid arthritis. J Rheumatol. 2016;43(2):289–297. doi: 10.3899/jrheum.140831
  • Glatt S, Baeten D, Baker T, et al. Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis. 2018 [cited 2024 Jan 5];77(4):523–532. doi: 10.1136/annrheumdis-2017-212127
  • Glatt S, Taylor PC, McInnes IB, et al. Efficacy and safety of bimekizumab as add-on therapy for rheumatoid arthritis in patients with inadequate response to certolizumab pegol: a proof-of-concept study. Ann Rheum Dis. 2019 [cited 2024 Jan 4];78:1033–1040. Available from: https://pubmed.ncbi.nlm.nih.gov/31177099/
  • Genovese MC, Weinblatt ME, Aelion JA, et al. ABT -122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate. Arthritis Rheumatol (Hoboken, NJ). 2018 [cited 2024 Jan 4];70(11):1710–1720. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/art.40580
  • Genovese MC, Weinblatt ME, Mease PJ, et al. Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology. 2018 [cited 2024 Jan 4];57:1972–1981. doi: 10.1093/rheumatology/key173
  • Martin DA, Churchill M, Flores-Suarez L, et al. A phase ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res Ther. 2013 [cited 2023 Dec 22];15(5):R164. doi: 10.1186/ar4347
  • Pavelka K, Chon Y, Newmark R, et al. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol. 2015 [cited 2023 Dec 22];42:912–919. Available from: https://pubmed.ncbi.nlm.nih.gov/25877498/
  • ClinicalTrials.gov. Safety and efficacy of AMG 827 in subjects with RA (NCT01059448). 2010 [cited 2023 Dec 22]. Available from: https://clinicaltrials.gov/study/NCT01059448
  • Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2009 [cited 2023 Dec 22];11:365–370. Available from: https://www/pmc/articles/PMC2811488/
  • Yamada H, Nakashima Y, Okazaki K, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Annals Of The Rheumatic Diseases. 2008 [cited 2023 Dec 22];67(9):1299–1304. Available from: https://pubmed.ncbi.nlm.nih.gov/18063670/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.