31
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapies in preclinical and in early clinical development for the treatment of urinary tract infections: from pathogens to therapies

, , , &
Received 13 Dec 2023, Accepted 01 May 2024, Published online: 09 May 2024

References

  • Bacheller CD, Bernstein JM. Urinary tract infections. Med Clin North Am. 1997 May;81(3):719–730. doi: 10.1016/s0025-7125(05)70542-3 PubMed PMID: 9167654.
  • Boris S, Suarez JE, Vazquez F, et al. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun. 1998 May;66(5):1985–1989. doi: 10.1128/IAI.66.5.1985-1989.1998 PubMed PMID: 9573080; PubMed Central PMCID: PMCPMC108154.
  • Fadda G, Nicoletti G, Schito GC, et al. Antimicrobial susceptibility patterns of contemporary pathogens from uncomplicated urinary tract infections isolated in a multicenter Italian survey: possible impact on guidelines. J Chemother. 2005 Jun;17(3):251–257. doi: 10.1179/joc.2005.17.3.251 PubMed PMID: 16038517.
  • Hooton TM, Stamm WE. Diagnosis and treatment of uncomplicated urinary tract infection. Infect Dis Clin North Am. 1997 Sep;11(3):551–581. doi: 10.1016/s0891-5520(05)70373-1 PubMed PMID: 9378923.
  • Hooton TM, Scholes D, Gupta K, et al. Amoxicillin-clavulanate vs ciprofloxacin for the treatment of uncomplicated cystitis in women: a randomized trial. JAMA. 2005 Feb 23;293(8):949–955. doi: 10.1001/jama.293.8.949 PubMed PMID: 15728165.
  • Sobel JD, Vazquez JA. Fungal infections of the urinary tract. World J Urol. 1999 Dec;17(6):410–414. doi: 10.1007/s003450050167 PubMed PMID: 10654372.
  • Chiamah OC, Ubachukwu PO, Anorue CO, et al. Urinary schistosomiasis in Ebonyi State, Nigeria from 2006 to 2017. J Vector Borne Dis. 2019 Apr;56(2):87–91. doi: 10.4103/0972-9062.263721 PubMed PMID: 31397382.
  • Ajibola O, Rowan AD, Ogedengbe CO, et al. Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Sci Rep. 2019 Jan 29;9. doi: 10.1038/s41598-018-36709-1 PubMed PMID: WOS:000456955500009; English.
  • Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog. 2019;11:10. doi: 10.1186/s13099-019-0290-0 PubMed PMID: 30828388; PubMed Central PMCID: PMCPMC6383261.
  • Tarkkanen AM, Allen BL, Williams PH, et al. Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect Immun. 1992 Mar;60(3):1187–1192. doi: 10.1128/iai.60.3.1187-1192.1992 PubMed PMID: 1347287; PubMed Central PMCID: PMCPMC257611.
  • Schaffer JN, Pearson MM, Mulvey MA, et al. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015 Oct;3(5). doi: 10.1128/microbiolspec.UTI-0017-2013 PubMed PMID: 26542036; PubMed Central PMCID: PMCPMC4638163.
  • El Husseini N, Mekonnen SA, Hall CL, et al. Characterization of the Entner-Doudoroff pathway in Pseudomonas aeruginosa catheter-associated urinary tract infections. J Bacteriol. 2023 Dec 4;206(1):e0036123. doi: 10.1128/jb.00361-23 PubMed PMID: 38047680.
  • Flores-Mireles AL, Walker JN, Caparon M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015 May;13(5):269–284. doi: 10.1038/nrmicro3432 PubMed PMID: 25853778; PubMed Central PMCID: PMCPMC4457377.
  • Nanmoku K, Ishikawa N, Kurosawa A, et al. Clinical characteristics and outcomes of adenovirus infection of the urinary tract after renal transplantation. Transpl Infect Dis. 2016 Apr;18(2):234–239. doi: 10.1111/tid.12519 PubMed PMID: 26919131.
  • Paduch DA. Viral lower urinary tract infections. Curr Urol Rep. 2007 Jul;8(4):324–335. doi: 10.1007/s11934-007-0080-y PubMed PMID: 18519018; PubMed Central PMCID: PMCPMC7089127.
  • Ordaya EE, Clement J, Vergidis P. The role of novel antifungals in the management of candidiasis: a clinical perspective. Mycopathologia. 2023 Dec;188(6):937–948. doi: 10.1007/s11046-023-00759-5 PubMed PMID: 37470902; PubMed Central PMCID: PMCPMC10687117.
  • Kauffman CA. Diagnosis and management of fungal urinary tract infection. Infect Dis Clin North Am. 2014 Mar;28(1):61–74. doi: 10.1016/j.idc.2013.09.004 PubMed PMID: 24484575.
  • Gupta S, Norgan AP, Erickson LA. Schistosomiasis of the urinary bladder. Mayo Clin Proc. 2023 Jul;98(7):1100–1101. doi: 10.1016/j.mayocp.2023.05.018 PubMed PMID: 37419579.
  • Dietrich CF, Douira-Khomsi W, Gharbi H, et al. Cystic echinococcosis, review and illustration of non-hepatic manifestations. Med Ultrason. 2020 Sep 5;22(3):319–324. doi: 10.11152/mu-2537 PubMed PMID: 32399540.
  • Ray S, Sonthalia N, Talukdar A. Microfilaruria in a patient of chyluria. Am J Trop Med Hyg. 2013 Nov;89(5):817–818. doi: 10.4269/ajtmh.13-0153 PubMed PMID: 24197171; PubMed Central PMCID: PMCPMC3820321.
  • Bandyopadhyay A, Majumder K, Goswami BK. Balantidium coli in urine sediment: report of a rare case presenting with hematuria. J Parasit Dis. 2013 Oct;37(2):283–285. doi: 10.1007/s12639-012-0163-7 PubMed PMID: 24431585; PubMed Central PMCID: PMCPMC3793101.
  • Neculicioiu VS, Colosi IA, Toc DA, et al. When a ciliate meets a flagellate: a rare case of colpoda spp. And Colpodella spp. Isolated from the urine of a human patient. Case report and brief review of literature. Biology-Basel. 2021 Jun;10(6). doi: 10.3390/biology10060476 PubMed PMID: WOS:000667833500001; English.
  • Godaly G, Ambite I, Svanborg C. Innate immunity and genetic determinants of urinary tract infection susceptibility. Curr Opin Infect Dis. 2015 Feb;28(1):88–96. doi: 10.1097/QCO.0000000000000127 PubMed PMID: 25539411; PubMed Central PMCID: PMCPMC4286230.
  • Foxman B, Frerichs RR. Epidemiology of urinary tract infection: I. Diaphragm use and sexual intercourse. Am J Public Health. 1985 Nov;75(11):1308–1313. doi: 10.2105/ajph.75.11.1308 PubMed PMID: 4051066; PubMed Central PMCID: PMCPMC1646718.
  • Foxman B, Frerichs RR. Epidemiology of urinary tract infection: II. Diet, clothing, and urination habits. Am J Public Health. 1985 Nov;75(11):1314–1317. doi: 10.2105/ajph.75.11.1314 PubMed PMID: 4051067; PubMed Central PMCID: PMCPMC1646695.
  • Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon. 2003 Feb;49(2):53–70. doi: 10.1067/mda.2003.7 PubMed PMID: 12601337.
  • Reid G. Probiotic agents to protect the urogenital tract against infection. Am J Clin Nutr. 2001 Feb;73(2 Suppl):437S–443S. doi: 10.1093/ajcn/73.2.437s PubMed PMID: 11157354.
  • Nicolle L. Antimicrobials are effective for treatment of uncomplicated urinary infection. Clin Microbiol Infect. 2021 Oct;27(10):1381–1382. doi: 10.1016/j.cmi.2021.07.010 PubMed PMID: 34271182.
  • Herthelius M. Antenatally detected urinary tract dilatation: long-term outcome. Pediatr Nephrol. 2023 Oct;38(10):3221–3227. doi: 10.1007/s00467-023-05907-z PubMed PMID: 36920569; PubMed Central PMCID: PMCPMC10465645.
  • Gyftopoulos K, Matkaris M, Vourda A, et al. Clinical implications of the anatomical position of the urethra meatus in women with recurrent post-coital cystitis: a case-control study. Int Urogynecol J. 2019 Aug;30(8):1351–1357. doi: 10.1007/s00192-018-3710-7 PubMed PMID: 29968091.
  • Hooton TM. Clinical practice. Uncomplicated urinary tract infection. N Engl J Med. 2012 Mar 15;366(11):1028–1037. doi: 10.1056/NEJMcp1104429 PubMed PMID: 22417256.
  • Chen Y, Hu J, Peng L, et al. Risk-Factor Analysis and prediction-model construction of urethral stricture after hypospadias surgery in children: a single-centre retrospective study. Arch Esp Urol. 2023 Nov;76(9):666–673. doi: 10.56434/j.arch.esp.urol.20237609.81 PubMed PMID: 38053421.
  • Kim JY, Yeo JK, Park MG, et al. Determination of microbiological characteristics and risk factors associated with bacteriuria and symptomatic urinary tract infection in patients with retained ureteral stents: an observational study. Transl Androl Urol. 2023 Jan 30;12(1):19–32. doi: 10.21037/tau-22-331 PubMed PMID: 36760873; PubMed Central PMCID: PMCPMC9906111.
  • Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon. 2003 Feb;49(2):71–82. doi: 10.1067/mda.2003.8 PubMed PMID: 12601338.
  • Confederat LG, Condurache MI, Alexa RE, et al. Particularities of urinary tract infections in diabetic patients: a concise review. Medicina (Kaunas). 2023 Sep 29;59(10). doi: 10.3390/medicina59101747 PubMed PMID: 37893465; PubMed Central PMCID: PMCPMC10608443.
  • Nicolle LE. Urinary tract infections in special populations: diabetes, renal transplant, HIV infection, and spinal cord injury. Infect Dis Clin North Am. 2014 Mar;28(1):91–104. doi: 10.1016/j.idc.2013.09.006 PubMed PMID: 24484577.
  • Wang X, Wang H, Xu P, et al. Epidemiological trends and risk factors related to lower urinary tract symptoms around childbirth: a one-year prospective study. BMC Public Health. 2023 Oct 31;23(1):2134. doi: 10.1186/s12889-023-17065-w PubMed PMID: 37907879; PubMed Central PMCID: PMCPMC10617094.
  • Maarschalk-Ellerbroek LJ, Hoepelman IM, Ellerbroek PM. Immunoglobulin treatment in primary antibody deficiency. Int J Antimicrob Agents. 2011 May;37(5):396–404. doi: 10.1016/j.ijantimicag.2010.11.027 PubMed PMID: 21276714.
  • Jamil S, Zafar MN, Siddiqui S, et al. Recurrent urinary tract infections in renal transplant recipients: risk factors and outcomes in low-resource settings. Saudi J Kidney Dis Transpl. 2022 Nov 1;33(6):761–773. doi: 10.4103/1319-2442.390256 PubMed PMID: 38018718.
  • Kaplan SA, Dmochowski R, Cash BD, et al. Systematic review of the relationship between bladder and bowel function: implications for patient management. Int J Clin Pract. 2013 Mar;67(3):205–216. doi: 10.1111/ijcp.12028 PubMed PMID: 23409689; eng.
  • Edlund C, Nord CE. Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections. J Antimicrob Chemother. 2000 Aug;46(90001):41–48. PubMed PMID: 10969051. 10.1093/jac/46.suppl_1.41
  • Lepargneur JP, Rousseau V. Protective role of the Doderlein flora. J Gynecol Obstet Biol Reprod (Paris). 2002 Sep;31(5):485–494. PubMed PMID: 12379833.
  • McGroarty JA. Probiotic use of lactobacilli in the human female urogenital tract. FEMS Immunol Med Microbiol. 1993 Apr;6(4):251–264. doi: 10.1111/j.1574-695X.1993.tb00337.x PubMed PMID: 8499891.
  • Pfau A, Sacks T. The bacterial flora of the vaginal vestibule, urethra and vagina in premenopausal women with recurrent urinary tract infections. J Urol. 1981 Nov;126(5):630–634. doi: 10.1016/s0022-5347(17)54661-3 PubMed PMID: 7029007.
  • Redondo-Lopez V, Cook RL, Sobel JD. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis. 1990 Sep;12(5):856–872. doi: 10.1093/clinids/12.5.856 PubMed PMID: 2237129.
  • Dias V. Candida species in the urinary tract: is it a fungal infection or not? Future Microbiol. 2020 Jan;15(2):81–83. doi: 10.2217/fmb-2019-0262 PubMed PMID: WOS:000531895900001; English.
  • Bramantono B, Danial A, Hadi U. A case of an AIDS patient with Cryptococcus neoformans infection. Pan Afr Med J. 2020;36:88. doi: 10.11604/pamj.2020.36.88.20406 PubMed PMID: 32774647; PubMed Central PMCID: PMCPMC7392875.
  • Mor N, Tekdoğan UY, M B. Parasitic diseases of urinary tract [review]. Mid Black Sea J Health Sci, 2016;2(3):13–20.
  • Johansen TE, Botto H, Cek M, et al. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int J Antimicrob Agents. 2011 Dec;38(Suppl):64–70. doi: 10.1016/j.ijantimicag.2011.09.009 PubMed PMID: 22018988.
  • E.A.U. EAU Guidelines on Urological Infections. Edn presented at the EAU Annual Congress Milan, Italy. 2023. Available from: https://uroweb.org/guidelines/urological-infections
  • Zhou Y, Zhou Z, Zheng L, et al. Urinary tract infections caused by Uropathogenic Escherichia coli: mechanisms of infection and treatment options. Int J Mol Sci. 2023 Jun 23;24(13). doi: 10.3390/ijms241310537 PubMed PMID: 37445714; PubMed Central PMCID: PMCPMC10341809.
  • Hirakawa H, Suzue K, Kurabayashi K, et al. The tol-pal system of uropathogenic Escherichia coli is responsible for optimal internalization into and aggregation within bladder epithelial cells, colonization of the urinary tract of mice, and bacterial motility. Front Microbiol. 2019;10:1827. doi: 10.3389/fmicb.2019.01827 PubMed PMID: 31456768; PubMed Central PMCID: PMCPMC6698795.
  • Narayanan A, Nair MS, Muyyarikkandy MS, et al. Inhibition and inactivation of uropathogenic Escherichia coli biofilms on urinary catheters by sodium selenite. Int J Mol Sci. 2018 Jun 7;19(6). doi: 10.3390/ijms19061703 PubMed PMID: 29880781; PubMed Central PMCID: PMCPMC6032314.
  • Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host pathogen interactions. Cell Surf. 2022 Dec;8:100075. doi: 10.1016/j.tcsw.2022.100075 PubMed PMID: 35198842; PubMed Central PMCID: PMCPMC8841375.
  • Spaulding CN, Schreiber H, Zheng W, et al. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. Elife. 2018 Jan 18;7. doi: 10.7554/eLife.31662 PubMed PMID: 29345620; PubMed Central PMCID: PMCPMC5798934.
  • Zhou M, Yang Y, Wu M, et al. Role of long polar fimbriae type 1 and 2 in pathogenesis of mammary pathogenic Escherichia coli. J Dairy Sci. 2021 Jul;104(7):8243–8255. doi: 10.3168/jds.2021-20122 PubMed PMID: 33814154; eng.
  • Conover MS, Hadjifrangiskou M, Palermo JJ, et al. Metabolic requirements of Escherichia coli in intracellular bacterial communities during urinary tract infection pathogenesis. mBio. 2016 Apr 12;7(2):e00104–16. doi: 10.1128/mBio.00104-16 PubMed PMID: 27073089; PubMed Central PMCID: PMCPMC4959519.
  • Zare M, Vehreschild M, Wagenlehner F. Management of uncomplicated recurrent urinary tract infections. BJU Int. 2022 Jun;129(6):668–678. doi: 10.1111/bju.15630 PubMed PMID: 34741796.
  • Olson PD, Justice SS, Hunstad DA. Chapter 76 - Escherichia coli in Urinary Tract Infections. In: Tang YW, Sussman M, Liu D, et al, editors. Molecular medical microbiology. 2nd ed. Vol. 3. 2015. p. 1373–1387.
  • Clegg S, Murphy CN, Mulvey MA, et al. Epidemiology and virulence of Klebsiella pneumoniae. Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.UTI-0005-2012 PubMed PMID: 26999397.
  • Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J Clin Pharm Ther. 2022 Nov;47(11):1875–1884. doi: 10.1111/jcpt.13787 PubMed PMID: 36200470; eng.
  • Lawal OU, Barata M, Fraqueza MJ, et al. Staphylococcus saprophyticus from Clinical and environmental origins have distinct biofilm composition. Front Microbiol. 2021;12:663768. doi: 10.3389/fmicb.2021.663768 PubMed PMID: 34163443; PubMed Central PMCID: PMCPMC8216562.
  • Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012 Mar 16;10(4):266–278. doi: 10.1038/nrmicro2761 PubMed PMID: 22421879; PubMed Central PMCID: PMCPMC3621121.
  • Tien BYQ, Goh HMS, Chong KKL, et al. Enterococcus faecalis promotes innate immune suppression and polymicrobial catheter-associated urinary tract infection. Infect Immun. 2017 Dec;85(12). doi: 10.1128/IAI.00378-17 PubMed PMID: 28893918; PubMed Central PMCID: PMCPMC5695114.
  • Torres C, Alonso CA, Ruiz-Ripa L, et al. Antimicrobial resistance in enterococcus spp. Of animal origin. Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0032-2018 PubMed PMID: 30051804; eng.
  • Yuan F, Huang Z, Yang T, et al. Pathogenesis of proteus mirabilis in Catheter-Associated Urinary Tract infections. Urol Int. 2021;105(5–6):354–361. doi: 10.1159/000514097 PubMed PMID: 33691318; eng.
  • Armbruster CE, Mobley HLT, Pearson MM, Donnenberg MS. Pathogenesis of proteus mirabilis infection. EcoSal Plus. 2018 Feb;8(1). doi: 10.1128/ecosalplus.ESP-0009-2017 PubMed PMID: 29424333; PubMed Central PMCID: PMCPMC5880328. eng.
  • Petty LA, Henig O, Patel TS, et al. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant enterobacteriaceae. Infect Drug Resist. 2018;11:1461–1472. doi: 10.2147/IDR.S150447 PubMed PMID: 30254477; PubMed Central PMCID: PMCPMC6140735.
  • Razaq L, Uddin F, Ali S, et al. In vitro Activity of New β-Lactamase Inhibitor Combinations against blaNDM, blaKPC, and ESBL-Producing enterobacteriales uropathogens. Antibiotics. 2023 Sep 25;12(10):1481. doi: 10.3390/antibiotics12101481 PubMed PMID: 37887182; PubMed Central PMCID: PMCPMC10604030.
  • Bush K, Bradford PA. Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat Rev Microbiol. 2019 May;17(5):295–306. doi: 10.1038/s41579-019-0159-8 PubMed PMID: 30837684.
  • Griffith DC, Loutit JS, Morgan EE, et al. Phase 1 study of the safety, tolerability, and pharmacokinetics of the beta-Lactamase Inhibitor Vaborbactam (RPX7009) in healthy adult subjects. Antimicrob Agents Chemother. 2016 Oct;60(10):6326–6332. doi: 10.1128/AAC.00568-16 PubMed PMID: 27527080; PubMed Central PMCID: PMCPMC5038296.
  • Dulyayangkul P, Wan Nur Ismah WAK, Douglas EJA, et al. Mutation of kvrA causes OmpK35 and OmpK36 porin downregulation and reduced meropenem-vaborbactam susceptibility in KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020 Jun 23;64(7). doi: 10.1128/AAC.02208-19 PubMed PMID: 32312773; PubMed Central PMCID: PMCPMC7318013.
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of meropenem combined with RPX7009, a Novel beta-Lactamase Inhibitor, against gram-negative clinical isolates in New York City. Antimicrob Agents Chemother. 2015 Aug;59(8):4856–4860. doi: 10.1128/AAC.00843-15 PubMed PMID: 26033723; PubMed Central PMCID: PMCPMC4505293.
  • Gaibani P, Lombardo D, Bussini L, et al. Epidemiology of Meropenem/Vaborbactam resistance in KPC-Producing Klebsiella pneumoniae causing bloodstream infections in Northern Italy, 2018. Antibiotics. 2021 May 6;10(5). doi: 10.3390/antibiotics10050536 PubMed PMID: 34066420; PubMed Central PMCID: PMCPMC8148119.
  • Garcia-Fernandez A, Villa L, Carta C, et al. Klebsiella pneumoniae ST258 producing KPC-3 identified in Italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob Agents Chemother. 2012 Apr;56(4):2143–2145. doi: 10.1128/AAC.05308-11 PubMed PMID: 22252815; PubMed Central PMCID: PMCPMC3318348.
  • Landman D, Bratu S, Quale J. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J Med Microbiol. 2009 Oct;58(Pt 10):1303–1308. doi: 10.1099/jmm.0.012575-0 PubMed PMID: 19556371; PubMed Central PMCID: PMCPMC2887543.
  • Nordmann P, Kerbol A, Bouvier M, et al. Rapid meropenem/vaborbactam NP test for detecting susceptibility/resistance in Enterobacterale. J Antimicrob Chemother. 2023;78(10):2428–2434. doi: 10.1093/jac/dkad224
  • Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I Randomized clinical Trial. JAMA. 2018 Feb 27;319(8):788–799. doi: 10.1001/jama.2018.0438 PubMed PMID: 29486041; PubMed Central PMCID: PMCPMC5838656.
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem–vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–455. doi: 10.1007/s40121-018-0214-1
  • E.M.A. EMA/572792/2020 - EMEA/H/C/004808. 2020 cited 2023 Feb 12. Available from: https://www.ema.europa.eu/en/documents/overview/recarbrio-epar-medicine-overview_en.pdf
  • Garcia-Fernandez S, Calvo J, Cercenado E, et al. Activity of imipenem/relebactam against Enterobacterales and Pseudomonas aeruginosa in Spain. SMART 2016-2020. Rev Esp Quimioter. 2023 Jun;36(3):302–309. doi: 10.37201/req/007.2023 PubMed PMID: 36951688; PubMed Central PMCID: PMCPMC10238800.
  • Karlowsky JA, Lob SH, Kazmierczak KM, et al. In vitro activity of imipenem/relebactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples: SMART surveillance United States 2015–2017. J Glob Antimicrob Resist. 2020;21:223–228. doi: 10.1016/j.jgar.2019.10.028
  • Lob SH, Karlowsky JA, Young K, et al. In vitro activity of imipenem-relebactam against resistant phenotypes of Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples - SMART surveillance Europe 2015-2017. J Med Microbiol. 2020 Feb;69(2):207–217. doi: 10.1099/jmm.0.001142 PubMed PMID: 31976856.
  • Karlowsky JA, Lob SH, Siddiqui F, et al. In vitro activity of imipenem/relebactam against piperacillin/tazobactam-resistant and meropenem-resistant non-Morganellaceae Enterobacterales and Pseudomonas aeruginosa collected from patients with bloodstream, intra-abdominal and urinary tract infections in Western Europe: SMART 2018-2020. J Med Microbiol. 2023 Feb;72(2). doi: 10.1099/jmm.0.001645 PubMed PMID: 36763081.
  • Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with Imipenem-Cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016 Oct;60(10):6234–6243. doi: 10.1128/AAC.00633-16 PubMed PMID: 27503659; PubMed Central PMCID: PMCPMC5038313.
  • Sims M, Mariyanovski V, McLeroth P, et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017 Sep 1;72(9):2616–2626. doi: 10.1093/jac/dkx139 PubMed PMID: 28575389.
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/Relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020 Apr 15;70(9):1799–1808. doi: 10.1093/cid/ciz530 PubMed PMID: 31400759; PubMed Central PMCID: PMCPMC7156774.
  • Kohira N, West J, Ito A, et al. In vitro antimicrobial activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob Agents Chemother. 2016 Feb;60(2):729–734. doi: 10.1128/AAC.01695-15 PubMed PMID: 26574013; PubMed Central PMCID: PMCPMC4750680.
  • Nishimura B, Escalante J, Tuttobene MR, et al. Acinetobacter baumannii response to cefiderocol challenge in human urine. Sci Rep. 2022 May 24;12(1):8763. doi: 10.1038/s41598-022-12829-7 PubMed PMID: 35610334; PubMed Central PMCID: PMCPMC9128776.
  • Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018 Dec;18(12):1319–1328. doi: 10.1016/S1473-3099(18)30554-1 PubMed PMID: 30509675.
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021 Feb;21(2):226–240. doi: 10.1016/S1473-3099(20)30796-9 PubMed PMID: 33058795.
  • Tiffany C, Dumont EF, Hossain M, et al. Pharmacokinetics, safety, and tolerability of gepotidacin administered as single or repeat ascending doses, in healthy adults and elderly subjects. Cts-Clin Transl Sci. 2022 Sep;15(9):2251–2264. doi: 10.1111/cts.13359 PubMed PMID: WOS:000823878100001; English.
  • Gibson EG, Bax B, Chan PF, et al. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against staphylococcus aureus Gyrase. ACS Infect Dis. 2019 Apr 12;5(4):570–581. doi: 10.1021/acsinfecdis.8b00315 PubMed PMID: 30757898; PubMed Central PMCID: PMCPMC6461504.
  • Flamm RK, Farrell DJ, Rhomberg PR, et al. Gepotidacin (GSK2140944) activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2017 Jul;61(7). doi: 10.1128/AAC.00468-17 PubMed PMID: WOS:000406257600048; English.
  • Farrell DJ, Sader HS, Rhomberg PR, et al. In vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2017 Mar;61(3). doi: 10.1128/AAC.02047-16 PubMed PMID: 28069643; PubMed Central PMCID: PMCPMC5328517.
  • Arends SJR, Butler D, Scangarella-Oman N, et al. Antimicrobial activity of gepotidacin tested against Escherichia coli and staphylococcus saprophyticus isolates causing urinary tract infections in Medical Centers Worldwide (2019 to 2020). Antimicrob Agents Chemother. 2023 Apr 18;67(4):e0152522. doi: 10.1128/aac.01525-22 PubMed PMID: 36877017; PubMed Central PMCID: PMCPMC10112209.
  • Dowell JA, Marbury TC, Smith WB, et al. Safety and pharmacokinetics of taniborbactam (VNRX-5133) with cefepime in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0025322. doi: 10.1128/aac.00253-22 PubMed PMID: 35920662; PubMed Central PMCID: PMCPMC9487543. eng.
  • Hernandez-Garcia M, Garcia-Castillo M, Nieto-Torres M, et al. Deciphering mechanisms affecting cefepime-taniborbactam in vitro activity in carbapenemase-producing Enterobacterales and carbapenem-resistant pseudomonas spp. isolates recovered during a surveillance study in Spain. Eur J Clin Microbiol Infect Dis. 2023 Dec 2;43(2):279–296. doi: 10.1007/s10096-023-04697-4 PubMed PMID: 38041722.
  • Bakthavatchalam YD, Elangovan D, Jaganathan SV, et al. In vitro activity of two Cefepime-Based Novel Combinations, Cefepime/Taniborbactam and Cefepime/Zidebactam, against carbapenemase-expressing enterobacterales collected in India. Microbiol Spectr. 2023 Feb 27;11(2):e0492522. doi: 10.1128/spectrum.04925-22 PubMed PMID: 36847537; PubMed Central PMCID: PMCPMC10100882.
  • Le Terrier C, Nordmann P, Sadek M, et al. In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J Antimicrob Chemother. 2023 May 3;78(5):1191–1194. doi: 10.1093/jac/dkad061 PubMed PMID: 36921067; PubMed Central PMCID: PMCPMC10154122.
  • Wagenlehner FM, Gasink LB, McGovern PC, et al. Cefepime–taniborbactam in complicated urinary tract infection. N Engl J Med. 2024;390(7):611–622. doi: 10.1056/NEJMoa2304748
  • El-Ghali A, Kunz Coyne AJ, Caniff K, et al. Sulbactam-durlobactam: a novel beta-lactam-beta-lactamase inhibitor combination targeting carbapenem-resistant Acinetobacter baumannii infections. Pharmacotherapy. 2023 Jun;43(6):502–513. doi: 10.1002/phar.2802 PubMed PMID: 37052117.
  • Sagan O, Yakubsevitch R, Yanev K, et al. Pharmacokinetics and tolerability of intravenous sulbactam-durlobactam with imipenem-cilastatin in hospitalized adults with complicated urinary tract infections, including acute pyelonephritis. Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01506-19 PubMed PMID: 31843995; PubMed Central PMCID: PMCPMC7038258.
  • Preston RA, Mamikonyan G, DeGraff S, et al. Single-center evaluation of the pharmacokinetics of WCK 5222 (Cefepime-Zidebactam Combination) in subjects with renal impairment. Antimicrob Agents Chemother. 2019 Jan;63(1). doi: 10.1128/aac.01484-18 PubMed PMID: 30397067; PubMed Central PMCID: PMCPMC6325229. eng.
  • Livermore DM, Mushtaq S, Warner M, et al. Activity of OP0595/beta-lactam combinations against Gram-negative bacteria with extended-spectrum, AmpC and carbapenem-hydrolysing beta-lactamases. J Antimicrob Chemother. 2015 Nov;70(11):3032–3041. doi: 10.1093/jac/dkv239 PubMed PMID: 26311835.
  • Morinaka A, Tsutsumi Y, Yamada M, et al. OP0595, a new diazabicyclooctane: mode of action as a serine beta-lactamase inhibitor, antibiotic and beta-lactam ‘enhancer’. J Antimicrob Chemother. 2015 Oct;70(10):2779–2786. doi: 10.1093/jac/dkv166 PubMed PMID: 26089439.
  • Hagihara M, Kato H, Sugano T, et al. Pharmacodynamic evaluation of meropenem, cefepime, or aztreonam combined with a novel beta-lactamase inhibitor, nacubactam, against carbapenem-resistant and/or carbapenemase-producing Klebsiella pneumoniae and Escherichia coli using a murine thigh-infection model. Int J Antimicrob Agents. 2021 May;57(5):106330. doi: 10.1016/j.ijantimicag.2021.106330 PubMed PMID: 33789129.
  • Monogue ML, Giovagnoli S, Bissantz C, et al. In vivo efficacy of Meropenem with a Novel Non-beta-Lactam-beta-Lactamase Inhibitor, Nacubactam, against gram-negative organisms exhibiting various resistance mechanisms in a murine complicated urinary tract infection Model. Antimicrob Agents Chemother. 2018 Sep;62(9). doi: 10.1128/AAC.02596-17 PubMed PMID: 30012751; PubMed Central PMCID: PMCPMC6125527.
  • Barnes MD, Taracila MA, Good CE, et al. Nacubactam Enhances Meropenem Activity against Carbapenem-Resistant Klebsiella pneumoniae Producing KPC. Antimicrob Agents Chemother. 2019 Aug;63(8). doi: 10.1128/AAC.00432-19 PubMed PMID: 31182530; PubMed Central PMCID: PMCPMC6658744.
  • Mallalieu NL, Winter E, Fettner S, et al. Safety and pharmacokinetic characterization of Nacubactam, a Novel beta-Lactamase Inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.02229-19 PubMed PMID: 32041717; PubMed Central PMCID: PMCPMC7179653.
  • Shapiro AB, Moussa SH, Carter NM, et al. Ceftazidime-avibactam resistance mutations V240G, D179Y, and D179Y/T243M in KPC-3 beta-lactamase do not alter cefpodoxime-ETX1317 susceptibility. ACS Infect Dis. 2021 Jan 8;7(1):79–87. doi: 10.1021/acsinfecdis.0c00575 PubMed PMID: 33291867.
  • Durand-Reville TF, Comita-Prevoir J, Zhang J, et al. Discovery of an orally available diazabicyclooctane inhibitor (ETX0282) of class A, C, and D serine beta-lactamases. J Med Chem. 2020 Nov 12;63(21):12511–12525. doi: 10.1021/acs.jmedchem.0c00579 PubMed PMID: 32658473; PubMed Central PMCID: PMCPMC7927146 except Michael D. Sacco and Yu Chen, are current or former employees of Entasis Therapeutics or AstraZeneca and may own stock or stock options from these companies.
  • Miller AA, Shapiro AB, McLeod SM, et al. In vitro Characterization of ETX1317, a broad-spectrum beta-Lactamase Inhibitor That Restores and enhances beta-Lactam activity against multi-drug-resistant enterobacteriales, including carbapenem-resistant strains. ACS Infect Dis. 2020 Jun 12;6(6):1389–1397. doi: 10.1021/acsinfecdis.0c00020 PubMed PMID: 32255609.
  • Veeraraghavan B, Bakthavatchalam YD, Sahni RD. Oral antibiotics in clinical development for community-acquired urinary tract infections. Infect Dis Ther. 2021 Dec;10(4):1815–1835. doi: 10.1007/s40121-021-00509-4 PubMed PMID: 34357517; PubMed Central PMCID: PMCPMC8572892.
  • O’Donnell J, Tanudra A, Chen A, et al. Pharmacokinetic/Pharmacodynamic determination and preclinical pharmacokinetics of the beta-Lactamase Inhibitor ETX1317 and its orally available prodrug ETX0282. ACS Infect Dis. 2020 Jun 12;6(6):1378–1388. doi: 10.1021/acsinfecdis.0c00019 PubMed PMID: 32379415; PubMed Central PMCID: PMCPMC7297445.
  • Gootz T, Retsema J, Girard A, et al. In vitro activity of cp-65,207, a new penem antimicrobial agent, in comparison with those of other agents. Antimicrob Agents Chemother. 1989 Aug;33(8):1160–1166. doi: 10.1128/Aac.33.8.1160 PubMed PMID: WOS:A1989AJ32000005; English.
  • Minamimura M, Taniyama Y, Inoue E, et al. In vitro antibacterial activity and beta-lactamase stability of CP-70,429 a new penem antibiotic. Antimicrob Agents Chemother. 1993 Jul;37(7):1547–1551. doi: 10.1128/AAC.37.7.1547 PubMed PMID: 8363389; PubMed Central PMCID: PMCPMC188011.
  • Watanabe K, Kato N, Tanaka-Bandoh K, et al. In vitro activities of sulopenem, a new parenteral penem, against anaerobes. Jpn J Antibiot. 1996 Apr;49(4):367–376. PubMed PMID: 8786627.
  • Ednie LM, Appelbaum PC. Antianaerobic activity of sulopenem compared to six other agents. Antimicrob Agents Chemother. 2009 May;53(5):2163–2170. doi: 10.1128/AAC.01557-08 PubMed PMID: 19223615; PubMed Central PMCID: PMCPMC2681565.
  • Karlowsky JA, Adam HJ, Baxter MR, et al. In vitro activity of Sulopenem, an Oral Penem, against urinary isolates of Escherichia coli. Antimicrob Agents Chemother. 2019 Jan;63(1). doi: 10.1128/AAC.01832-18 PubMed PMID: 30397056; PubMed Central PMCID: PMCPMC6325175.
  • Walkty AJ, Karlowsky JA, Baxter MR, et al. In vitro activity of sulopenem against 1880 bacterial pathogens isolated from Canadian patients with urinary tract infections (CANWARD, 2014-21). J Antimicrob Chemother. 2022 Nov 28;77(12):3414–3420. doi: 10.1093/jac/dkac333 PubMed PMID: 36177825.
  • Dunne MW, Aronin SI, Das AF, et al. Sulopenem for the treatment of complicated urinary tract infections including pyelonephritis: a phase 3, randomized trial. Clin Infect Dis. 2023 Jan 6;76(1):78–88. doi: 10.1093/cid/ciac704 PubMed PMID: 36068705; PubMed Central PMCID: PMCPMC9825827.
  • Maher JM, Huband MD, Blankers CG, et al. In vitro activity of sulopenem and comparator agents against enterobacterales and anaerobic clinical isolates collected during the SENTRY antimicrobial surveillance program. J Antimicrob Chemother. 2023 Jun 1;78(6):1406–1414. doi: 10.1093/jac/dkad099 PubMed PMID: 37042351; PubMed Central PMCID: PMCPMC10232259.
  • Aszodi J, Lampilas M, Fromentin C, et al. Preparation of azabicycles as inhibitors of b-lactamases and their use in pharmaceutical compositions containing b-lactams. Aventis Pharma SA, FR 2835186, WO 20033063864. 2003.
  • Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. Activity of AVE1330A, an innovative broad-spectrum non-β-lactam β-lactamase inhibitor. J Antimicrob Chemother. 2004 Aug;54(2):410–417. doi: 10.1093/jac/dkh358 PubMed PMID: WOS:000223372100019; English.
  • Huband MD, Fedler KA, Sader HS, et al. Determination of MIC quality control ranges for ceftibuten-avibactam (fixed 4 mug/mL), a novel beta-Lactam/beta-lactamase inhibitor combination. J Clin Microbiol. 2023 Jul 20;61(7):e0165722. doi: 10.1128/jcm.01657-22 PubMed PMID: 37395644; PubMed Central PMCID: PMCPMC10358160.
  • Karlowsky JA, Hackel MA, Sahm DF. In vitro activity of Ceftibuten/VNRX-5236 against urinary tract infection isolates of Antimicrobial-Resistant Enterobacterales. Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0130421. doi: 10.1128/AAC.01304-21 PubMed PMID: 34662183; PubMed Central PMCID: PMCPMC8765315.
  • Karlowsky JA, Wise MG, Hackel MA, et al. Ceftibuten-Ledaborbactam Activity against multidrug-resistant and extended-spectrum-beta-lactamase-positive clinical isolates of enterobacterales from a 2018-2020 global surveillance collection. Antimicrob Agents Chemother. 2022 Nov 15;66(11):e0093422. doi: 10.1128/aac.00934-22 PubMed PMID: 36286518; PubMed Central PMCID: PMCPMC9664860.
  • Griffin ME, Espinosa J, Becker JL, et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science. 2021 Aug 27;373(6558):1040±. doi: 10.1126/science.abc9113 PubMed PMID: WOS:000690202600040; English.
  • Hikida M, Itahashi K, Igarashi A, et al. In vitro antibacterial activity of LJC 11,036, an active metabolite of L-084, a new oral carbapenem antibiotic with potent antipneumococcal activity. Antimicrob Agents Chemother. 1999 Aug;43(8):2010–2016. doi: 10.1128/AAC.43.8.2010 PubMed PMID: 10428928; PubMed Central PMCID: PMCPMC89406.
  • Muratani T, Doi K, Kobayashi T, et al. Antimicrobial activity of tebipenem against various clinical isolates from various specimen, mainly urinary tract. Jpn J Antibiot. 2009 Apr;62(2):116–126. PubMed PMID: 19673353.
  • Thamlikitkul V, Lorchirachoonkul N, Tiengrim S. In vitro and in vivo activity of tebipenem against ESBL-producing E. coli. J Med Assoc Thai. 2014 Dec;97(12):1259–1268. PubMed PMID: 25764632; eng.
  • Arends SJR, Rhomberg PR, Cotroneo N, et al. Antimicrobial activity evaluation of tebipenem (SPR859), an Orally Available Carbapenem, against a global set of Enterobacteriaceae isolates, including a challenge set of organisms. Antimicrob Agents Chemother. 2019 Jun;63(6). doi: 10.1128/aac.02618-18 PubMed PMID: 30936096; PubMed Central PMCID: PMCPMC6535533. eng.
  • Patel G, Rodvold KA, Gupta VK, et al. Pharmacokinetics of oral tebipenem pivoxil hydrobromide in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 2022 May 17;66(5):e0240721. doi: 10.1128/aac.02407-21 PubMed PMID: 35420493; PubMed Central PMCID: PMCPMC9112917. eng.
  • Li Z, Su M, Cheng W, et al. Pharmacokinetics, urinary excretion, and pharmaco-metabolomic study of tebipenem pivoxil granules after single escalating oral dose in healthy Chinese volunteers. Front Pharmacol. 2021;12:696165. doi: 10.3389/fphar.2021.696165 PubMed PMID: 34326771; PubMed Central PMCID: PMCPMC8314177. eng.
  • McEntee L, Johnson A, Farrington N, et al. Pharmacodynamics of Tebipenem: new options for oral treatment of multidrug-resistant gram-negative infections. Antimicrob Agents Chemother. 2019 Aug;63(8). doi: 10.1128/aac.00603-19 PubMed PMID: 31109982; PubMed Central PMCID: PMCPMC6658774. eng.
  • Eckburg PB, Muir L, Critchley IA, et al. Oral tebipenem pivoxil hydrobromide in complicated urinary tract infection. N Engl J Med. 2022 Apr 7;386(14):1327–1338. doi: 10.1056/NEJMoa2105462 PubMed PMID: 35388666; eng.
  • Hecker SJ, Reddy KR, Lomovskaya O, et al. Discovery of Cyclic Boronic Acid QPX7728, an Ultrabroad-Spectrum Inhibitor of Serine and metallo-β-lactamases. J Med Chem. 2020 Jul 23;63(14):7491–7507. doi: 10.1021/acs.jmedchem.9b01976 PubMed PMID: 32150407; eng.
  • Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a New Ultrabroad-Spectrum Beta-Lactamase Inhibitor of Serine and metallo-Beta-lactamases. Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/aac.00130-20 PubMed PMID: 32152086; PubMed Central PMCID: PMCPMC7269513. eng.
  • Lomovskaya O, Tsivkovski R, Nelson K, et al. Spectrum of beta-lactamase inhibition by the Cyclic Boronate QPX7728, an Ultrabroad-spectrum beta-lactamase Inhibitor of Serine and metallo-beta-lactamases: enhancement of activity of multiple antibiotics against isogenic strains expressing single beta-lactamases. Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/aac.00212-20 PubMed PMID: 32229489; PubMed Central PMCID: PMCPMC7269471. eng.
  • Lomovskaya O, Rubio-Aparicio D, Tsivkovski R, et al. The Ultrabroad-Spectrum Beta-Lactamase Inhibitor QPX7728 Restores the Potency of Multiple Oral Beta-Lactam Antibiotics against Beta-Lactamase-producing strains of resistant enterobacterales. Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0216821. doi: 10.1128/aac.02168-21 PubMed PMID: 34902261; PubMed Central PMCID: PMCPMC8846479. eng.
  • Sabet M, Tarazi Z, Griffith DC. In vivo activity of QPX7728, an Ultrabroad-Spectrum Beta-Lactamase Inhibitor, in combination with Beta-Lactams against Carbapenem-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020 Oct 20;64(11). doi: 10.1128/aac.01267-20 PubMed PMID: 32839224; PubMed Central PMCID: PMCPMC7577155. eng.
  • Sjostedt S. Antibody response in man following B. coli vaccine therapy. Acta Pathol Microbiol Scand. 1951;29(2):150–156. PubMed PMID: 14902469. 10.1111/j.1699-0463.1951.tb00113.x
  • Hagberg L, Leffler H, Svanborg Eden C. Non-antibiotic prevention of urinary tract infection. Infection. 1985;13(Suppl 2):S196–201. doi: 10.1007/BF01644430 PubMed PMID: 3902654.
  • Billips BK, Schaeffer AJ, Klumpp DJ. Molecular basis of uropathogenic Escherichia coli evasion of the innate immune response in the bladder. Infect Immun. 2008 Sep;76(9):3891–3900. doi: 10.1128/IAI.00069-08 PubMed PMID: 18559433; PubMed Central PMCID: PMCPMC2519411.
  • Zeljkovic SC, Schadich E, Dzubák P, et al. Antiviral activity of selected Lamiaceae essential oils and their monoterpenes against SARS-Cov-2. Front Pharmacol. 2022 May 2;13. doi: 10.3389/fphar.2022.893634 PubMed PMID: WOS:000796925100001; English.
  • Aguiniga LM, Yaggie RE, Schaeffer AJ, et al. Lipopolysaccharide domains modulate urovirulence. Infect Immun. 2016 Nov;84(11):3131–3140. doi: 10.1128/IAI.00315-16 PubMed PMID: 27528276; PubMed Central PMCID: PMCPMC5067746.
  • O’Brien VP, Hannan TJ, Nielsen HV, et al. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.UTI-0013-2012 PubMed PMID: 26999391; PubMed Central PMCID: PMCPMC4887100.
  • Huttner A, Hatz C, van den Dobbelsteen G, et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect Dis. 2017 May;17(5):528–537. doi: 10.1016/S1473-3099(17)30108-1 PubMed PMID: 28238601.
  • Hedayat S, Habibi M, Hosseini Doust R, et al. Design of a chimeric protein composed of FimH, FyuA and CNF-1 virulence factors from uropathogenic Escherichia coli and evaluation its biological activity and immunogenicity in vitro and in vivo. Microb Pathog. 2023 Jan;174:105920. doi: 10.1016/j.micpath.2022.105920 PubMed PMID: 36460143.
  • Carvalho M, Guimaraes CM, Mayer JR Jr., et al. Hospital-associated funguria: analysis of risk factors, clinical presentation and outcome. Braz J Infect Dis. 2001 Dec;5(6):313–318. doi: 10.1590/s1413-86702001000600004 PubMed PMID: 11980593.
  • Chang CY, Hsieh MH. Fungal ball in the urinary bladder. N Engl J Med. 2022 Jul 7;387(1):e2. doi: 10.1056/NEJMicm2114684 PubMed PMID: 35775997.
  • Thomas L, Tracy CR. Treatment of fungal urinary tract infection. Urol Clin North Am. 2015 Nov;42(4):473–483. doi: 10.1016/j.ucl.2015.05.010 PubMed PMID: 26475944.
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016 Feb 15;62(4):e1–50. doi: 10.1093/cid/civ933 PubMed PMID: 26679628; PubMed Central PMCID: PMCPMC4725385.
  • Rkieh L, El Nekidy WS, Alsoud LO, et al. Outcomes of caspofungin use in the treatment of Candida-related urinary tract infections, a case series. IDCases. 2022;28:e01510. doi: 10.1016/j.idcr.2022.e01510 PubMed PMID: 35646592; PubMed Central PMCID: PMCPMC9136130.
  • Sanchez-Marques R, Bocanegra C, Salvador F, et al. Prevalence and morbidity of urogenital schistosomiasis among pre-school age children in Cubal, Angola. PLoS Negl Trop Dis. 2023 Nov;17(11):e0011751. doi: 10.1371/journal.pntd.0011751 PubMed PMID: 37939154; PubMed Central PMCID: PMCPMC10659159.
  • Chang PC, Hsu YC, Hsieh ML, et al. A pilot study on Trichomonas vaginalis in women with recurrent urinary tract infections. Biomed J. 2016 Aug;39(4):289–294. doi: 10.1016/j.bj.2015.11.005 PubMed PMID: 27793272; PubMed Central PMCID: PMCPMC6139873.
  • Daher EF, da Silva Junior GB, Trivedi M, et al. Kidney complications of parasitic diseases. Nat Rev Nephrol. 2022 Jun;18(6):396–406. doi: 10.1038/s41581-022-00558-z PubMed PMID: 35347315.
  • Hagiya H, Terasaka T, Kimura K, et al. Filarial Chyluria as a rare cause of urinary retention. Intern Med. 2014;53(17):2001–2005. doi: 10.2169/internalmedicine.53.2572 PubMed PMID: WOS:000341712500020; English.
  • Seth A. Microfilaruria in a patient of intermittent chyluria. J Cytol. 2009 Oct;26(4):151–152. doi: 10.4103/0970-9371.62186 PubMed PMID: 21938181; PubMed Central PMCID: PMCPMC3168002.
  • Brunkwall J, Simonsen O, Bergqvist D, et al. Chyluria treated with renal autotransplantation: a case report. J Urol. 1990 Apr;143(4):793–796. doi: 10.1016/s0022-5347(17)40098-x PubMed PMID: 2313811.
  • Khanduri A, Chauhan S, Chandola I, et al. Balantidiosis: a rare accidental finding in the urine of a patient with acute renal failure. J Clin Diagn Res. 2014 May;8(5):DD03–4. doi: 10.7860/JCDR/2014/7033.4343 PubMed PMID: 24995185; PubMed Central PMCID: PMCPMC4080006.
  • Karuna T, Khadanga S. A rare case of urinary balantidiasis in an elderly renal failure patient. Trop Parasitol. 2014 Jan;4(1):47–49. doi: 10.4103/2229-5070.129165 PubMed PMID: 24754028; PubMed Central PMCID: PMCPMC3992804.
  • Almaw A, Berhan A, Solomon Y, et al. Balantidium coli; rare and accidental finding in the Urine of Pregnant Woman: case report. Int Med Case Rep J. 2022;15:105–109. doi: 10.2147/IMCRJ.S355536 PubMed PMID: 35345500; PubMed Central PMCID: PMCPMC8957295.
  • World Ciliophora Database. Colpoda steini maupas, 1883 [Internet]. Belgium; 2023 cited 2023 Sep 12. Available from: www.marinespecies.org/aphia.php?p=taxdetails&id=426727
  • Jiang JF, Jiang RR, Chang QC, et al. Potential novel tick-borne colpodella species parasite infection in patient with neurological symptoms. PloS Negl Trop Dis. 2018 Aug;12(8):e0006546. doi: 10.1371/journal.pntd.0006546 PubMed PMID: 30071019; PubMed Central PMCID: PMCPMC6071948.
  • Costache C, Bursasiu S, Filipas C, et al. A case of ciliate protozoa colpoda spp. (Ciliata: colpodidae) detected in human urine. Iran j parasitol. 2011 Dec;6(4):99–104. PubMed PMID: 22347320; PubMed Central PMCID: PMCPMC3279913.
  • Tandan M, Thapa P, Maharjan P, et al. Impact of antimicrobial stewardship program on antimicrobial-resistance and prescribing in nursing homes: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2022 Jun;29:74–87. doi: 10.1016/j.jgar.2022.02.002 PubMed PMID: 35158078.
  • W.H.O. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022.
  • Katsube T, Echols R, Arjona Ferreira JC, et al. Cefiderocol, a siderophore cephalosporin for gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment. J Clin Pharmacol. 2017 May;57(5):584–591. doi: 10.1002/jcph.841 PubMed PMID: 27874971; PubMed Central PMCID: PMCPMC5412848. eng.
  • Saravolatz LD, Stein GE. Plazomicin: a new aminoglycoside. Clin Infect Dis. 2020 Feb 3;70(4):704–709. doi: 10.1093/cid/ciz640 PubMed PMID: 31328228; eng.
  • Rizk ML, Rhee EG, Jumes PA, et al. Intrapulmonary Pharmacokinetics of Relebactam, a Novel β-Lactamase Inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018 Mar;62(3). doi: 10.1128/aac.01411-17 PubMed PMID: 29311084; PubMed Central PMCID: PMCPMC5826112. eng.
  • Wenzler E, Gotfried MH, Loutit JS, et al. Meropenem-RPX7009 concentrations in plasma, epithelial lining fluid, and alveolar macrophages of healthy adult subjects. Antimicrob Agents Chemother. 2015 Dec;59(12):7232–7239. doi: 10.1128/aac.01713-15 PubMed PMID: 26349830; PubMed Central PMCID: PMCPMC4649232. eng.
  • Overcash JS, Tiffany CA, Scangarella-Oman NE, et al. Phase 2a pharmacokinetic, safety, and exploratory efficacy evaluation of oral gepotidacin (GSK2140944) in female participants with uncomplicated urinary tract infection (acute uncomplicated cystitis). Antimicrob Agents Chemother. 2020 Jun 23;64(7). doi: 10.1128/aac.00199-20 PubMed PMID: 32284384; PubMed Central PMCID: PMCPMC7318048. eng.
  • Mallalieu NL, Winter E, Fettner S, et al. Safety and pharmacokinetic characterization of Nacubactam, a Novel β-Lactamase Inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/aac.02229-19 PubMed PMID: 32041717; PubMed Central PMCID: PMCPMC7179653. eng.
  • Lomovskaya O, Castanheira M, Lindley J, et al. In vitro potency of xeruborbactam in combination with multiple beta-lactam antibiotics in comparison with other beta-lactam/beta-lactamase inhibitor (BLI) combinations against carbapenem-resistant and extended-spectrum beta-lactamase-producing enterobacterales. Antimicrob Agents Chemother. 2023 Oct 6;67(11):e0044023. doi: 10.1128/aac.00440-23 PubMed PMID: 37800963; PubMed Central PMCID: PMCPMC10648875.
  • Li L, Tan X, Zhou T, et al. In vivo efficacy and PK/PD analyses of zifanocycline (KBP-7072), an aminomethylcycline antibiotic, against Acinetobacter baumannii in a neutropenic murine thigh infection model. J Infect Chemother. 2024 Jan;30(1):34–39. doi: 10.1016/j.jiac.2023.09.010 PubMed PMID: 37714267.
  • Sou T, Hansen J, Liepinsh E, et al. Model-informed drug development for antimicrobials: translational PK and PK/PD modeling to predict an efficacious human dose for apramycin. Clin Pharmacol Ther. 2021 Apr;109(4):1063–1073. doi: 10.1002/cpt.2104 PubMed PMID: 33150591; PubMed Central PMCID: PMCPMC8048880 in aminoglycoside therapeutics. All other authors declared no competing interests for this work.
  • Lepak AJ, Wang W, Andes DR. Pharmacodynamic evaluation of MRX-8, a novel polymyxin, in the neutropenic mouse thigh and lung infection models against gram-negative pathogens. Antimicrob Agents Chemother. 2020 Oct 20;64(11). doi: 10.1128/AAC.01517-20 PubMed PMID: 32868332; PubMed Central PMCID: PMCPMC7577140.
  • Zhang Y, Zhao C, Wang Q, et al. Evaluation of the in vitro activity of new polymyxin B analogue SPR206 against clinical MDR, colistin-resistant and tigecycline-resistant gram-negative bacilli. J Antimicrob Chemother. 2020 Sep 1;75(9):2609–2615. doi: 10.1093/jac/dkaa217 PubMed PMID: 32591806; eng.
  • Eichler HG, Pignatti F, Schwarzer-Daum B, et al. Randomized controlled trials versus real world evidence: neither magic nor myth. Clin Pharmacol Ther. 2021 May;109(5):1212–1218. doi: 10.1002/cpt.2083 PubMed PMID: 33063841; PubMed Central PMCID: PMCPMC8246742.
  • Ríos E, Diaz MDL, Culebras E, et al. Resistance to fosfomycin is increasing and is significantly associated with extended-spectrum β-lactamase-production in urinary isolates of. Med Microbiol Immunol. 2022 Dec;211(5–6):269–272. doi: 10.1007/s00430-022-00749-2 PubMed PMID: WOS:000849446300001; English.
  • Khan MA, Rahman AU, Khan B, et al. Antibiotic resistance profiling and phylogenicity of uropathogenic bacteria isolated from patients with urinary tract infections. Antibiotics. 2023 Oct 3;12(10). doi: 10.3390/antibiotics12101508 PubMed PMID: 37887209; PubMed Central PMCID: PMCPMC10603882.
  • Loras C, Perez-Vazquez M, Gonzalez Prieto A, et al. Prevalence of fosA3 gene in fosfomycin-resistant proteus mirabilis in the Autonomous Community of Madrid (Spain) and characterization of two positive strains. Microb Drug Resist. 2023 Oct;29(10):444–447. doi: 10.1089/mdr.2022.0269 PubMed PMID: 37023411.
  • Grilo T, Freire S, Miguel B, et al. Occurrence of plasmid-mediated fosfomycin resistance (fos genes) among Escherichia coli isolates, Portugal. J Glob Antimicrob Resist. 2023 Dec;35:342–346. doi: 10.1016/j.jgar.2023.08.001 PubMed PMID: 37553021.
  • Findlay J, Sierra R, Raro OHF, et al. Plasmid-mediated fosfomycin resistance in Escherichia coli isolates of worldwide origin. J Glob Antimicrob Resist. 2023 Dec;35:137–142. doi: 10.1016/j.jgar.2023.09.003 PubMed PMID: 37709135.
  • Abdelraheem WM, Mahdi WKM, Abuelela IS, et al. High incidence of fosfomycin-resistant uropathogenic among children. BMC Infect Dis. 2023 Jul 17;23(1). doi: 10.1186/s12879-023-08449-9 PubMed PMID: WOS:001031340600001; English.
  • Mattioni Marchetti V, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol. 2023;13:1178547. doi: 10.3389/fcimb.2023.1178547 PubMed PMID: 37469601; PubMed Central PMCID: PMCPMC10352792.
  • Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):100–106. doi: 10.1007/BF01964420 PubMed PMID: 1864271.
  • Fresta M, Furneri PM, Mezzasalma E, et al. Correlation of trimethoprim and brodimoprim physicochemical and lipid membrane interaction properties with their accumulation in human neutrophils. Antimicrob Agents Chemother. 1996 Dec;40(12):2865–2873. doi: 10.1128/Aac.40.12.2865 PubMed PMID: WOS:A1996VW22100036; English.
  • Fresta M, Guccione S, Beccari AR, et al. Combining molecular modeling with experimental methodologies: mechanism of membrane permeation and accumulation of ofloxacin. Bioorg Med Chem. 2002 Dec;10(12):3871–3889. doi: 10.1016/s0968-0896(02)00350-4 PubMed PMID: 12413839.
  • Nix DE, Goodwin SD, Peloquin CA, et al. Antibiotic Tissue Penetration and its relevance - impact of Tissue Penetration on infection response. Antimicrob Agents Chemother. 1991 Oct;35(10):1953–1959. doi: 10.1128/Aac.35.10.1953 PubMed PMID: WOS:A1991GJ40800002; English.
  • Gonzalez MJ, Zunino P, Scavone P, et al. Selection of effective antibiotics for uropathogenic Escherichia coli intracellular bacteria reduction. Front Cell Infect Microbiol. 2020;10:542755. doi: 10.3389/fcimb.2020.542755 PubMed PMID: 33194792; PubMed Central PMCID: PMCPMC7609437.
  • Bongers S, Hellebrekers P, Leenen LPH, et al. Intracellular penetration and effects of antibiotics on staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019 May 4;8(2). doi: 10.3390/antibiotics8020054 PubMed PMID: 31060222; PubMed Central PMCID: PMCPMC6628357.
  • Leatham-Jensen MP, Mokszycki ME, Rowley DC, et al. Uropathogenic Escherichia coli metabolite-dependent quiescence and persistence may explain antibiotic tolerance during urinary tract infection. mSphere. 2016 Jan;1(1). doi: 10.1128/mSphere.00055-15 PubMed PMID: 27303698; PubMed Central PMCID: PMCPMC4863606.
  • Kerrn MB, Struve C, Blom J, et al. Intracellular persistence of Escherichia coli in urinary bladders from mecillinam-treated mice. J Antimicrob Chemother. 2005 Mar;55(3):383–386. doi: 10.1093/jac/dki002 PubMed PMID: 15681580.
  • Hvidberg H, Struve C, Krogfelt KA, et al. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob Agents Chemother. 2000 Jan;44(1):156–163. doi: 10.1128/AAC.44.1.156-163.2000 PubMed PMID: 10602738; PubMed Central PMCID: PMCPMC89643.
  • Blango MG, Mulvey MA. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother. 2010 May;54(5):1855–1863. doi: 10.1128/AAC.00014-10 PubMed PMID: 20231390; PubMed Central PMCID: PMCPMC2863638.
  • Pohl A. Modes of administration of antibiotics for symptomatic severe urinary tract infections. Cochrane Database Syst Rev. 2007 Oct 17;2007(4):Cd003237. doi: 10.1002/14651858.CD003237.pub2 PubMed PMID: 17943784; PubMed Central PMCID: PMCPMC7003567. eng.
  • Chaudhari PP, Monuteaux MC, Bachur RG. Emergency Department revisits after an initial parenteral antibiotic dose for UTI. Pediatrics. 2018 Sep;142(3). doi: 10.1542/peds.2018-0900 PubMed PMID: 30131437; eng.
  • Rasmussen M. Aerococci and aerococcal infections. J Infect. 2013 Jun;66(6):467–474. doi: 10.1016/j.jinf.2012.12.006 PubMed PMID: 23277106.
  • Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect. 2016 Jan;22(1):22–27. doi: 10.1016/j.cmi.2015.09.026 PubMed PMID: 26454061.
  • Hemenway AN, Christensen A, Schriever C. Treatment considerations for potential uropathogens detected by precision microbiological testing. Am J Health Syst Pharm. 2018 Nov 15;75(22):1775–1782. doi: 10.2146/ajhp180208 PubMed PMID: 30404894.
  • Qindeel M, Barani M, Rahdar A, et al. Nanomaterials for the diagnosis and treatment of urinary tract infections. Nanomaterials (Basel). 2021 Feb 22;11(2). doi: 10.3390/nano11020546 PubMed PMID: 33671511; PubMed Central PMCID: PMCPMC7926703.
  • Sanchez SV, Navarro N, Catalán-Figueroa J, et al. Nanoparticles as potential novel therapies for urinary tract infections. Front Cell Infect Microbiol. 2021 Apr 19; 11;11. doi: 10.3389/fcimb.2021.656496 PubMed PMID: WOS:000646043200001; English.
  • Carbone C, Fuochi V, Zielinska A, et al. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf B Biointerfaces. 2020 Feb;186:110705. doi: 10.1016/j.colsurfb.2019.110705 PubMed PMID: 31830707.
  • Pignatello R, Fuochi V, Petronio GP, et al. Formulation and characterization of erythromycin-loaded solid lipid nanoparticles. Biointerface Res App. 2017 Sep 15;7(5):2145–2150. PubMed PMID: WOS:000416250800004; English.
  • Pignatello R, Leonardi A, Fuochi V, et al. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: formulation and microbiological evaluation. Nanomaterials (Basel). 2018 May 6;8(5):E304. doi: 10.3390/nano8050304 PubMed PMID: 29734771; PubMed Central PMCID: PMC5977318.
  • Furneri PM, Fuochi V, Pignatello R. Foreword: globalization of the scientific literature: CPD as a case study. Curr Pharm Des. 2017 Nov 21;23(1):1–9. doi: 10.2174/138161282301170213194403 PubMed PMID: 29173152.
  • Furneri PM, Petronio GP, Fuochi V, et al. Nanosized devices as antibiotics and antifungals delivery: past, news, and outlook. In: Andronescu E, Grumezescu AM, editor. Micro and Nano Technologies, Nanostructures for Drug Delivery. Elsevier. 2017. p. 697–748. doi: 10.1016/B978-0-323-46143-6.00023-3
  • Farid A, Mohamed D, Mostafa D, et al. AMB Express. 2023 Nov 20;13(1). doi: 10.1186/s13568-023-01639-3 Novel grape seed extract nanoparticles attenuate amikacin-induced nephrotoxicity in rats. PubMed PMID: WOS:001106471600001; English.
  • Abdelrazik M, Elkotaby HH, Yousef A, et al. Green synthesis of silver nanoparticles derived from lemon and pomegranate peel extracts to combat multidrug-resistant bacterial isolates. J Genet Eng Biotechn. 2023 Oct 10;21(1):97. doi: 10.1186/s43141-023-00547-0 PubMed PMID: WOS:001082781800001; English. Green synthesis of silver nanoparticles derived from lemon and pomegranate peel extracts to combat multidrug-resistant bacterial isolates.
  • Ahmad N, Ali S, Abbas M, et al. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep. 2023 Sep 11;13(1):14972. doi: 10.1038/s41598-023-41502-w PubMed PMID: 37696980; PubMed Central PMCID: PMCPMC10495404.
  • Kenneally C, Murphy CP, Sleator RD, et al. The urinary microbiome and biological therapeutics: novel therapies for urinary tract infections. Microbiol Res. 2022 Jun;259:127010. doi: 10.1016/j.micres.2022.127010 PubMed PMID: 35338973.
  • Fuochi V, Li Volti G, Furneri PM. Commentary: lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol. 2017;8:1815. doi: 10.3389/fmicb.2017.01815 PubMed PMID: 28993762; PubMed Central PMCID: PMC5622189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.