35
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical application and potential pluripotent effects of hepatocyte growth factor in spinal cord injury regeneration

, , &
Received 28 Dec 2023, Accepted 22 May 2024, Published online: 29 May 2024

References

  • Quadri SA, Farooqui M, Ikram A, et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev. 2020;43(2):425–441. doi: 10.1007/s10143-018-1008-3
  • Nishimura S, Yasuda A, Iwai H, et al. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Mol Brain. 2013;6(1):3. doi: 10.1186/1756-6606-6-3
  • Hashimoto S, Nagoshi N, Shinozaki M, et al. Microenvironmental modulation in tandem with human stem cell transplantation enhances functional recovery after chronic complete spinal cord injury. Biomaterials. 2023;295:122002. doi: 10.1016/j.biomaterials.2023.122002
  • Bracken MB, Shepard MJ, Collins WF, et al. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury: results of the second national acute spinal cord injury study. N Engl J Med. 1990;322(20):1405–1411. doi: 10.1056/NEJM199005173222001
  • Bracken MB, Shepard MF, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury: results of the third national acute spinal injury randomized controlled trial. JAMA. 1997;277(20):1597–1604. doi: 10.1001/jama.1997.03540440031029
  • Polland ME, Apple DF. Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia. Spine. 2003;28(1):33–39. doi: 10.1097/00007632-200301010-00009
  • Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93(1):1–7. doi: 10.3171/spi.2000.93.1.0001
  • Pointillart V, Petitjean ME, Wiart L, et al. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 2000;38(2):71–76. doi: 10.1038/sj.sc.3100962
  • Nakamura T, Shinno H, Ichihara A. Insulin and glucagon as a new regulator system for tryptophan oxygenase activity demonstrated in primary cultured rat hepatocytes. J Biol Chem. 1980;255(16):7533–7535. doi: 10.1016/S0021-9258(19)43858-1
  • Nakamura T, Tomita Y, Ichihara A. Density-dependent growth control of adult rat hepatocytes in primary culture. J Biochem. 1983;94(4):1029–1035. doi: 10.1093/oxfordjournals.jbchem.a134444
  • Forte TM. Primary hepatocytes in monolayer culture: a model for studies on lipoprotein metabolism. Annu Rev Physiol. 1984;46(1):403–415. doi: 10.1146/annurev.ph.46.030184.002155
  • Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci, USA. 1986;83(17):6489–6493. doi: 10.1073/pnas.83.17.6489
  • Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–804. doi: 10.1126/science.1846706
  • Nakamura T, Nawa K, Ichihara A, et al. Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett. 1987;224(2):311–316. doi: 10.1016/0014-5793(87)80475-1
  • Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):588–610. doi: 10.2183/pjab.86.588
  • Funakoshi H, Nakamura T. Hepatocyte growth factor: from diagnosis to clinical applications.Clin Chim Acta. Clinica Chimica Acta. 2003;327(1–2):1–23. doi: 10.1016/S0009-8981(02)00302-9
  • Kinoshita T, Tashiro K, Nakamura T. Marked increase of HGF mRNA in non-parenchymal liver cells of rats treated with hepatotoxins. Biochem Biophys Res Commun. 1989;165(3):1229–1234. doi: 10.1016/0006-291X(89)92733-2
  • Kitamura K, Fujiyoshi K, Yamane J-I, et al. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One. 2011;6(11):e27706. doi: 10.1371/journal.pone.0027706
  • Kitamura K, Nagoshi N, Tsuji O, et al. Application of hepatocyte growth factor for acute spinal cord injury: the road from basic studies to human treatment. Int J Mol Sci. 2019;20(5):1054. doi: 10.3390/ijms20051054
  • Jeong SR, Kwon MJ, Lee HG, et al. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol. 2012;233(1):312–322. doi: 10.1016/j.expneurol.2011.10.021
  • Yamane K, Mazaki T, Shiozaki Y, et al. Collagen-binding hepatocyte growth factor (HGF) alone or with a gelatin- furfurylamine hydrogel enhances functional recovery in mice after spinal cord injury. Sci Rep. 2018;8(1):917. doi: 10.1038/s41598-018-19316-y
  • Giannopoulou M, Dai C, Tan X, et al. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-κB signaling. The American Journal Of Pathology. 2008;173(1):30–41. doi: 10.2353/ajpath.2008.070583
  • Misawa H, Takigawa T, Takigawa T, et al. Multipotent neurotrophic effects of hepatocyte growth factor in spinal cord injury. IJMS. 2019;20(23):6078. doi: 10.3390/ijms20236078
  • Benkhoucha M, Santiago-Raber ML, Schneiter G, et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25 + Foxp3 + regulatory T cells. Proc Natl Acad Sci U S A. 2010;107(14):6424–6429. doi: 10.1073/pnas.0912437107
  • Nishimura S, Sasaki T, Shimizu A, et al. Global gene expression analysis following spinal cord injury in non-human primates. Exp Neurol. 2014;261:171–179. doi: 10.1016/j.expneurol.2014.05.021
  • Choi W, Lee J, Lee J, et al. Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration. Front Physiol. 2019;10:914. doi: 10.3389/fphys.2019.00914
  • Akita H, Takagi N, Ishihara N, et al. Hepatocyte growth factor improves synaptic localization of the NMDA receptor and intracellular signaling after excitotoxic injury in cultured hippocampal neurons. Exp Neurol. 2008;210(1):83–94. doi: 10.1016/j.expneurol.2007.10.001
  • Ma TC, Campana A, Lange PS, et al. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci. 2010;30(2):739–748. doi: 10.1523/JNEUROSCI.5266-09.2010
  • Huang HT, Sun ZG, Liu H-W, et al. ERK/MAPK and PI3K/AKT signal channels simultaneously activated in nerve cell and axon after facial nerve injury. Saudi Journal Of Biological Sciences. 2017;24(8):1853–1858. doi: 10.1016/j.sjbs.2017.11.027
  • Xu X, Fu S, Shi X, et al. Microglial BDNF, PI3K, and p-ERK in the Spinal Cord Are Suppressed by Pulsed Radiofrequency on Dorsal Root Ganglion to Ease SNI-Induced Neuropathic Pain in Rats. Pain Res Manag. 2019;2019:5948686. doi: 10.1155/2019/5948686
  • Yamane K, Misawa H, Takigawa T, et al. Multipotent neurotrophic effects of hepatocyte growth factor in spinal cord injury. Int J Mol Sci. 2019;20(23):6078. doi: 10.3390/ijms20236078
  • Liu C, Wu ZZ, Shu C-L, et al. Experimental investigation of HGF inhibiting glial scar in vitro. Cell Mol Neurobiol. 2011;31(2):259–268. doi: 10.1007/s10571-010-9616-7
  • Kitamura K, Iwanami A, Nakamura M, et al. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res. 2007;85(11):2332–2342. doi: 10.1002/jnr.21372
  • Kitamura K, Iwanami A, Iwai, H et al. Therapeutic time window and preclinical efficacy of intrathecal administration of recombinant human hepatocyte growth factor for acute spinal cord injury. J Spine Res. 2016;7:934–939.
  • Nagoshi N, Tsuji O, Kitamura K, et al. Phase I/II study of intrathecal administration of recombinant human hepatocyte growth factor in patients with acute spinal cord injury: a double-blind, randomized clinical trial of safety and efficacy. J Neurotrauma. 2020;37(15):1752–1758. doi: 10.1089/neu.2019.6854
  • Suematsu Y, Nagoshi N, Shinozaki M, et al. Hepatocyte growth factor pretreatment boosts functional recovery after spinal cord injury through human iPSC-derived neural stem/progenitor cell transplantation. Inflamm Regen. 2023;43(1):50. doi: 10.1186/s41232-023-00298-y
  • Hashimoto S, Nagoshi N, Nakamura M, et al. Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res. 2024;19(4):818–824. doi: 10.4103/1673-5374.382230
  • Wanner IB, Anderson MA, Song B, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33(31):12870–12886. doi: 10.1523/JNEUROSCI.2121-13.2013
  • Dias DO, Kim H, Holl D, et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell. 2018;173(1):153–65 e22. doi: 10.1016/j.cell.2018.02.004
  • Gheradi E, Stoker M. Hepatocyte growth factor--scatter factor: mitogen, motogen, and met. Cancer Cells. 1991;3(6):227–232.
  • Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions. Intl Journal Of Cancer. 2006;119(3):477–483. doi: 10.1002/ijc.21808
  • Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension. 2004;44(2):203–209. doi: 10.1161/01.HYP.0000136394.08900.ed
  • Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118(1):58–65. doi: 10.1161/CIRCULATIONAHA.107.727347
  • Warita H, Kato M, Asada R, et al. Safety, tolerability, and pharmacodynamics of intrathecal injection of recombinant human HGF (KP-100) in subjects with amyotrophic lateral sclerosis: a phase I trial. J Clin Pharmacol. 2019;59(5):677–687. doi: 10.1002/jcph.1355
  • Hirano S, Kawamoto A, Tateya I, et al. A phase I/II exploratory clinical trial for intracordal injection of recombinant hepatocyte growth factor for vocal fold scar and sulcus. J Tissue Eng Regen Med. 2018;12(4):1031–1038. doi: 10.1002/term.2603
  • Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(6):553–572. doi: 10.1517/14728222.2012.680957
  • Honmou O, Yamashita T, Morita T, et al. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clin Neurol Neurosur. 2021;203:106565. doi: 10.1016/j.clineuro.2021.106565
  • Curtis E, Martin JR, Gabel B, et al. A first-in-human, phase i study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell. 2018;22(6):941–50 e6. doi: 10.1016/j.stem.2018.05.014
  • Sugai K, Sumida M, Shofuda T, et al. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen Ther. 2021;18:321–333. doi: 10.1016/j.reth.2021.08.005
  • Fehlings MG, Moghaddamjou A, Harrop JS, et al. Safety and efficacy of riluzole in acute spinal cord injury study (RISCIS): a multi-center, randomized, placebo-controlled, double-blinded trial. J Neurotrauma. 2023;40(17–18):1878–1888. doi: 10.1089/neu.2023.0163
  • Fehlings MG, Kim KD, Aarabi B, et al. Rho inhibitor VX-210 in acute traumatic subaxial cervical spinal cord injury: design of the SPinal cord injury rho INhibition InvestiGation (SPRING) clinical trial. J Neurotrauma. 2018;35(9):1049–1056. doi: 10.1089/neu.2017.5434
  • Petitjean ME, Pointillart V, Dixmerias F, et al. Traitement médicamenteux de la lésion médullaire traumatique au stade aigu. Annales Françaises d’Anesthésie et de Réanimation. 1998;17(2):114–122. doi: 10.1016/S0750-7658(98)80058-0
  • Cardenas DD, Ditunno J, Graziani V, et al. Phase 2 trial of sustained-release fampridine in chronic spinal cord injury. Spinal Cord. 2007;45(2):158–168. doi: 10.1038/sj.sc.3101947
  • Geisler FH, Coleman WP, Grieco G, Poonian D. Sygen Study Group. The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976). 2001;26(24 Suppl):87–98. doi: 10.1097/00007632-200112151-00015
  • Wu JC, Huang WC, Tsai Y-A, et al. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary phase I clinical study. J Neurosurg Spine. 2008;8(3):208–214. doi: 10.3171/SPI/2008/8/3/208
  • Koda M, Hanaoka H, Sato T, et al. Study protocol for the G-SPIRIT trial: a randomised, placebo-controlled, double-blinded phase III trial of granulocyte colony-stimulating factor-mediated neuroprotection for acute spinal cord injury. BMJ Open. 2018;8(5):e019083. doi: 10.1136/bmjopen-2017-019083
  • Alstermark B, Isa T, Ohki Y, et al. Disynaptic Pyramidal Excitation in Forelimb Motoneurons Mediated Via C 3 –C 4 Propriospinal Neurons in the Macaca fuscata. Journal Of Neurophysiology. 2004;6(6):3580–3585. doi: 10.1152/jn.1999.82.6.3580
  • Alstermark B, Ogawa J, Ohki Y, et al. Disynaptic pyramidal excitation in forelimb motoneurons mediated via C 3 –C 4 propriospinal neurons in the Macaca fuscata. Journal Of Neurophysiology. 1999;82(6):3580–3585. doi: 10.1152/jn.1999.82.6.3580
  • Tillakaratne NJ, Guu JJ, de Leon RD, et al. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Neuroscience. 2010;166(1):23–33. doi: 10.1016/j.neuroscience.2009.12.010
  • Potas JR, Zheng C, Moussa C, et al. Augmented locomotor recovery after spinal cord injury in the athymic nude rat. Journal Of Neurotrauma. 2006;23(5):660–673. doi: 10.1089/neu.2006.23.660
  • Kirshblum S, Snider B, Eren F, et al. Characterizing natural recovery after traumatic spinal cord injury. J Neurotrauma. 2021;38(9):1267–1284. doi: 10.1089/neu.2020.7473

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.