31
Views
0
CrossRef citations to date
0
Altmetric
Review

Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents

, , , , , , , & show all
Pages 839-849 | Received 03 May 2024, Accepted 03 Jul 2024, Published online: 22 Jul 2024

References

  • Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma. Hepatology. 2023 May;77(5):1773–1796. doi: 10.1002/hep.32740
  • Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016 Apr 14;2(1):16018. doi: 10.1038/nrdp.2016.18
  • Zucman-Rossi J, Villanueva A, Nault JC, et al. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015 Oct;149(5):1226–1239.e4. doi: 10.1053/j.gastro.2015.05.061
  • Singal AG, Kudo M, Bruix J. Breakthroughs in hepatocellular carcinoma therapies. Clin Gastroenterol And Hepatol. 2023 Jul;21(8):2135–2149. doi: 10.1016/j.cgh.2023.01.039
  • Llovet JM, Pinyol R, Kelley RK, et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat Cancer. 2022 Apr 28;3(4):386–401. doi: 10.1038/s43018-022-00357-2
  • Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008 Jul 24;359(4):378–390. doi: 10.1056/NEJMoa0708857
  • Singal AG, Llovet JM, Yarchoan M, et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology. 2023 Dec;78(6):1922–1965. doi: 10.1097/HEP.0000000000000466
  • Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI. Sorafenib. 2019. p. 239–266.
  • Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020 May 14;382(20):1894–1905. doi: 10.1056/NEJMoa1915745
  • Yamashita T, Kudo M, Ikeda K, et al. REFLECT – a phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: an analysis of Japanese subset. J Gastroenterol. 2020 Jan 12;55(1):113–122. doi: 10.1007/s00535-019-01642-1
  • Facciorusso A, Tartaglia N, Villani R, et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: a systematic review and meta-analysis. Am J Transl Res. 2021;13(4):2379–2387.
  • Yang X, Yang C, Zhang S, et al. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell. 2024 Feb;42(2):180–197. doi: 10.1016/j.ccell.2024.01.007
  • Boyault S, Rickman DS, de Reyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007 Jan;45(1):42–52. doi: 10.1002/hep.21467
  • Vij M, Calderaro J. Pathologic and molecular features of hepatocellular carcinoma: an update. World J Hepatol. 2021 Apr 27;13(4):393–410. doi: 10.4254/wjh.v13.i4.393
  • Craig AJ, von Felden J, Garcia-Lezana T, et al. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020 Mar;17(3):139–152. doi: 10.1038/s41575-019-0229-4
  • Nault JC, Ningarhari M, Rebouissou S, et al. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol. 2019 Sep 28;16(9):544–558. doi: 10.1038/s41575-019-0165-3
  • Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014 Dec 27;60(6):1983–1992. doi: 10.1002/hep.27372
  • Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013 Jul 26;4(1):2218. doi: 10.1038/ncomms3218
  • Torrecilla S, Sia D, Harrington AN, et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J Hepatol. 2017 Dec;67(6):1222–1231. doi: 10.1016/j.jhep.2017.08.013
  • Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017 Mar;152(4):745–761. doi: 10.1053/j.gastro.2016.11.048
  • Castelli G, Pelosi E, Testa U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel). 2017 Sep 20;9(9):127. doi: 10.3390/cancers9090127
  • Bayo J, Fiore EJ, Dominguez LM, et al. A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets. J Hepatol. 2019 Jul;71(1):78–90. doi: 10.1016/j.jhep.2019.03.007
  • Hlady RA, Sathyanarayan A, Thompson JJ, et al. Integrating the epigenome to identify drivers of hepatocellular carcinoma. Hepatology. 2019 Feb 5;69(2):639–652. doi: 10.1002/hep.30211
  • Cleary SP, Jeck WR, Zhao X, et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology. 2013 Nov;58(5):1693–1702. doi: 10.1002/hep.26540
  • Senni N, Savall M, Cabrerizo Granados D, et al. β-catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut. 2019 Feb;68(2):322–334. doi: 10.1136/gutjnl-2017-315448
  • Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 2020 Feb;72(2):215–229. doi: 10.1016/j.jhep.2019.08.017
  • Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014 Dec 2;46(12):1267–1273. doi: 10.1038/ng.3126
  • Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015 May 30;47(5):505–511. doi: 10.1038/ng.3252
  • Ahn S, Jang SJ, Shim JH, et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014 Dec 22;60(6):1972–1982. doi: 10.1002/hep.27198
  • Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. Mol BioSyst. 2015 Jul;11(7):1946–1954. doi: 10.1039/C5MB00101C
  • Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev. 2023 Sep;42(3):629–652. doi: 10.1007/s10555-023-10084-4
  • Sawey ET, Chanrion M, Cai C, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell. 2011 Mar;19(3):347–358. doi: 10.1016/j.ccr.2011.01.040
  • Chiang DY, Villanueva A, Hoshida Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008 Aug 15;68(16):6779–6788. doi: 10.1158/0008-5472.CAN-08-0742
  • Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res. 2021;149:63–101.
  • Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012 Jun 6;44(6):694–698. doi: 10.1038/ng.2256
  • Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012 Aug 19;12(8):564–571. doi: 10.1038/nrc3278
  • Sun H, Yang H, Mao Y. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering. Front Pharmacol. 2023 May 5;14. doi: 10.3389/fphar.2023.1150151
  • Gluzman-Poltorak Z, Cohen T, Herzog Y, et al. Neuropilin-2 and neuropilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. J Biol Chem. 2000 Jun;275(24):18040–18045. doi: 10.1074/jbc.M909259199
  • Matsumoto T, Mugishima H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in Atherogenesis. J Atheroscler Thromb. 2006;13(3):130–135. doi: 10.5551/jat.13.130
  • Sia D, Alsinet C, Newell P, et al. VEGF signaling in cancer treatment. Curr Pharm Des. 2014 May 31;20(17):2834–2842. doi: 10.2174/13816128113199990590
  • Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med. 2010 Jun 1;10(4):369–373. doi: 10.2174/156652410791316968
  • Moser C, Lang SA, Stoeltzing O. The direct effects of anti–vascular endothelial growth factor therapy on tumor cells. Clin Colorectal Cancer. 2007 Jul;6(8):564–571. doi: 10.3816/CCC.2007.n.023
  • Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol. 2023 Aug;79(2):506–515. doi: 10.1016/j.jhep.2023.03.003
  • Sen DR, Kaminski J, Barnitz RA, et al. The epigenetic landscape of T cell exhaustion. Sci (1979). 2016 Dec 2;354(6316):1165–1169. doi: 10.1126/science.aae0491
  • Pardoll D. Cancer and the immune system: basic concepts and targets for intervention. Semin Oncol. 2015 Aug;42(4):523–538. doi: 10.1053/j.seminoncol.2015.05.003
  • Wei SC, Anang NAAS, Sharma R, et al. Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci USA. 2019 Nov 5;116(45):22699–22709. doi: 10.1073/pnas.1821218116
  • Gavalas NG, Tsiatas M, Tsitsilonis O, et al. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br J Cancer. 2012 Nov 20;107(11):1869–1875. doi: 10.1038/bjc.2012.468
  • Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015 Feb 9;212(2):139–148. doi: 10.1084/jem.20140559
  • Dirkx AEM, Oude Egbrink MGA, Kuijpers MJE, et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res. 2003 May 1;63(9):2322–2329.
  • Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996 Oct 1;2(10):1096–1103. doi: 10.1038/nm1096-1096
  • Wada J, Suzuki H, Fuchino R, et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res. 2009 Mar;29(3):881–888.
  • Huang Y, Chen X, Dikov MM, et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood. 2007 Jul 15;110(2):624–631. doi: 10.1182/blood-2007-01-065714
  • Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018 May 13;15(5):310–324. doi: 10.1038/nrclinonc.2018.9
  • Xu J, Shen J, Gu S, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a nonrandomized, open-label, phase II trial. Clin Cancer Res. 2021 Feb 15;27(4):1003–1011. doi: 10.1158/1078-0432.CCR-20-2571
  • Zhang TQ, Geng ZJ, Zuo MX, et al. Camrelizumab (a PD-1 inhibitor) plus apatinib (an VEGFR-2 inhibitor) and hepatic artery infusion chemotherapy for hepatocellular carcinoma in Barcelona clinic liver cancer stage C (TRIPLET): a phase II study. Signal Transduct Target Ther. 2023 Oct 27;8(1):413. doi: 10.1038/s41392-023-01663-6
  • Lyu N, Kong Y, Mu L, et al. Hepatic arterial infusion of oxaliplatin plus fluorouracil/leucovorin vs. sorafenib for advanced hepatocellular carcinoma. J Hepatol. 2018 Jul;69(1):60–69. doi: 10.1016/j.jhep.2018.02.008
  • Li QJ, He MK, Chen HW, et al. Hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin versus transarterial chemoembolization for large hepatocellular carcinoma: a randomized phase III trial. JCO. 2022 Jan 10;40(2):150–160. doi: 10.1200/JCO.21.00608
  • Lai Z, He M, Bu X, et al. Lenvatinib, toripalimab plus hepatic arterial infusion chemotherapy in patients with high-risk advanced hepatocellular carcinoma: a biomolecular exploratory, phase II trial. Eur J Cancer. 2022 Oct;174:68–77. doi: 10.1016/j.ejca.2022.07.005
  • Huang JT, Zhong JH, Zhang J, et al. Hepatectomy combined with apatinib and camrelizumab for CNLC stage IIIb hepatocellular carcinoma: a phase II trial protocol. BMJ Open. 2023 Sep 28;13(9):e067730. doi: 10.1136/bmjopen-2022-067730
  • Ren Z, Xu J, Bai Y, et al. ORIENT-32: updated characterization of response to sintilimab plus bevacizumab biosimilar (IBI305) vs sorafenib for unresectable hepatocellular carcinoma. JCO. 2023 Feb 1;41(4_suppl):570–570. doi: 10.1200/JCO.2023.41.4_suppl.570
  • Zhou M, Zhu S, Xu C, et al. A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Invest New Drugs. 2023 Feb 10;41(1):162–167. doi: 10.1007/s10637-023-01335-w
  • Raja A, Park I, Haq F, et al. FGF19–FGFR4 signaling in hepatocellular carcinoma. Cells. 2019 Jun 4;8(6):536. doi: 10.3390/cells8060536
  • Chan SL, Schuler M, Kang YK, et al. A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors. J Exp Clin Cancer Res. 2022 Dec 2;41(1):189. doi: 10.1186/s13046-022-02383-5
  • Zhou Z, Chen X, Fu Y, et al. Characterization of FGF401 as a reversible covalent inhibitor of fibroblast growth factor receptor 4. Chem Commun. 2019;55(42):5890–5893. doi: 10.1039/C9CC02052G
  • Weiss A, Adler F, Buhles A, et al. FGF401, a first-in-class highly selective and potent FGFR4 inhibitor for the treatment of FGF19-driven hepatocellular cancer. Mol Cancer Ther. 2019 Dec 1;18(12):2194–2206. doi: 10.1158/1535-7163.MCT-18-1291
  • Fairhurst RA, Knoepfel T, Buschmann N, et al. Discovery of roblitinib (FGF401) as a reversible-covalent inhibitor of the kinase activity of fibroblast growth factor receptor 4. J Med Chem. 2020 Nov 12;63(21):12542–12573. doi: 10.1021/acs.jmedchem.0c01019
  • Shen G, Zheng F, Ren D, et al. Anlotinib: a novel multi-targeting tyrosine kinase inhibitor in clinical development. J Hematol Oncol. 2018 Dec 19;11(1):120. doi: 10.1186/s13045-018-0664-7
  • Gao Y, Liu P, Shi R. Anlotinib as a molecular targeted therapy for tumors (Review). Oncol Lett. 2020 May 28;20(2):1001–1014. doi: 10.3892/ol.2020.11685
  • Syed YY. Anlotinib: first global approval. Drugs. 2018 Jul 26;78(10):1057–1062. doi: 10.1007/s40265-018-0939-x
  • Zhou M, Chen X, Zhang H, et al. China national medical products administration approval summary: anlotinib for the treatment of advanced non‐small cell lung cancer after two lines of chemotherapy. Cancer Commun. 2019 Dec 20;39(1):1–10. doi: 10.1186/s40880-019-0410-8
  • Sun Y, Zhou A, Zhang W, et al. Anlotinib in the treatment of advanced hepatocellular carcinoma: an open-label phase II study (ALTER-0802 study). Hepatol Int. 2021 Jun 7;15(3):621–629. doi: 10.1007/s12072-021-10171-0
  • Han C, Ye S, Hu C, et al. Clinical activity and safety of penpulimab (anti-pd-1) with anlotinib as first-line therapy for unresectable hepatocellular carcinoma: an open-label, multicenter, phase ib/ii trial (AK105-203). Front Oncol. 2021 Jul 13;11. doi: 10.3389/fonc.2021.684867
  • Xue LS, Huang H, Zeng J, et al. Tislelizumab in combination with anlotinib as first-line treatment for unresectable hepatocellular carcinoma: a single-arm, phase II clinical trial. JCO. 2023 Feb 1;41(4_suppl):576–576. doi: 10.1200/JCO.2023.41.4_suppl.576
  • Chen X, Li W, Wu X, et al. Safety and efficacy of sintilimab and anlotinib as first line treatment for advanced hepatocellular carcinoma (KEEP-G04): a single-arm phase 2 study. Front Oncol. 2022 May 31;12. doi: 10.3389/fonc.2022.909035
  • Zhang CS, Zeng ZM, Zhuo MY, et al. Anlotinib combined with toripalimab as first-line therapy for unresectable hepatocellular carcinoma: a prospective, multicenter, phase II study. Oncologist. 2023 Dec 11;28(12):e1239–47. doi: 10.1093/oncolo/oyad169
  • Kang M, Xue F, Xu S, et al. Effectiveness and safety of anlotinib with or without S-1 in the treatment of patients with advanced hepatocellular carcinoma in a Chinese population: a prospective, phase 2 study. Radiol Oncol. 2023 Sep 1;57(3):405–410. doi: 10.2478/raon-2023-0036
  • Chhetri P. Current development of anti-cancer drug S-1. JCDR. 2016. doi: 10.7860/JCDR/2016/19345.8776
  • Fishman P, Stemmer SM, Bareket-Samish A, et al. Targeting the A3 adenosine receptor to treat hepatocellular carcinoma: anti-cancer and hepatoprotective effects. Purinergic Signal. 2023 Sep 13;19(3):513–522. doi: 10.1007/s11302-023-09925-2
  • Madi L, Ochaion A, Rath-Wolfson L, et al. The A3 adenosine receptor is highly expressed in tumor versus normal cells. Clin Cancer Res. 2004 Jul 1;10(13):4472–4479. doi: 10.1158/1078-0432.CCR-03-0651
  • Stemmer SM, Benjaminov O, Medalia G, et al. CF102 For the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist. 2013 Jan 1;18(1):25–26. doi: 10.1634/theoncologist.2012-0211
  • Stemmer SM, Manojlovic NS, Marinca MV, et al. Namodenoson in advanced hepatocellular carcinoma and child–Pugh B cirrhosis: randomized placebo-controlled clinical trial. Cancers (Basel). 2021 Jan 7;13(2):187. doi: 10.3390/cancers13020187
  • Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023 Apr 11;20(4):203–222. doi: 10.1038/s41575-022-00704-9
  • Lin X, Pan F, Abudoureyimu M, et al. Aurora-A inhibitor synergistically enhances the inhibitory effect of anlotinib on hepatocellular carcinoma. Biochem Biophys Res Commun. 2024 Jan;690:149247. doi: 10.1016/j.bbrc.2023.149247
  • Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001 Jan;2(1):21–32. doi: 10.1038/35048096
  • Zhou SF, Yuan CX, Zhou ZW, et al. Inhibition of mitotic Aurora kinase a by alisertib induces apoptosis and autophagy of human gastric cancer AGS and NCI-N78 cells. Drug Des Devel Ther. 2015 Jan;487:487. doi: 10.2147/DDDT.S74127
  • Zhang C, Qu L, Lian S, et al. PRL-3 promotes ubiquitination and degradation of AURKA and colorectal cancer progression via dephosphorylation of FZR1. Cancer Res. 2019 Mar 1;79(5):928–940. doi: 10.1158/0008-5472.CAN-18-0520
  • Zhang W, Xia D, Li Z, et al. Aurora-A/ERK1/2/mTOR axis promotes tumor progression in triple-negative breast cancer and dual-targeting Aurora-A/mTOR shows synthetic lethality. Cell Death Dis. 2019 Aug 13;10(8):606. doi: 10.1038/s41419-019-1855-z
  • Wang-Bishop L, Chen Z, Gomaa A, et al. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. Gastroenterology. 2019 Feb;156(3):662–675.e7. doi: 10.1053/j.gastro.2018.10.030
  • Adhikari B, Bozilovic J, Diebold M, et al. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol. 2020 Nov 28;16(11):1179–1188. doi: 10.1038/s41589-020-00652-y
  • Yin Y, Yuan X, Gao H, et al. Nanoformulations of small molecule protein tyrosine kinases inhibitors potentiate targeted cancer therapy. Int J Pharm. 2020 Jan 5;573:118785. doi: 10.1016/j.ijpharm.2019.118785
  • Su C, Liu Y, Li R, et al. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019 Mar;143:97–114. doi: 10.1016/j.addr.2019.06.008
  • Li X, Wang L, Wang L, et al. Overcoming therapeutic failure in osteosarcoma via Apatinib-encapsulated hydrophobic poly(ester amide) nanoparticles. Biomater Sci. 2020 Oct 27;8(21):5888–5899. doi: 10.1039/D0BM01296C
  • Zhang Y, Chen H, Feng N, et al. Construction and antitumor effects of antitumor micelles with cyclic RGD-modified anlotinib. Nanomed: Nanotechnol, Biol And Med. 2020 Aug;28:102224. doi: 10.1016/j.nano.2020.102224
  • Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021 Jun;18(6):327–344. doi: 10.1038/s41571-021-00470-8
  • Fuentes-Antrás J, Genta S, Vijenthira A, et al. Antibody–drug conjugates: in search of partners of choice. Trends Cancer. 2023 Apr;9(4):339–354. doi: 10.1016/j.trecan.2023.01.003
  • Kong FE, Li GM, Tang YQ, et al. Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody-drug conjugate. Sci Transl Med. 2021 Feb 3;13(579). doi: 10.1126/scitranslmed.abb6282
  • Fu Y, Urban DJ, Nani RR, et al. Glypican‐3‐specific antibody drug conjugates targeting hepatocellular carcinoma. Hepatology. 2019 Aug 19;70(2):563–576. doi: 10.1002/hep.30326
  • An S, Zhang D, Zhang Y, et al. GPC3-targeted immunoPET imaging of hepatocellular carcinomas. Eur J Nucl Med Mol Imaging. 2022 Jul 11;49(8):2682–2692. doi: 10.1007/s00259-022-05723-x
  • Zhang FK, Ni QZ, Wang K, et al. Targeting USP9X–AMPK axis in ARID1A-Deficient hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2022;14(1):101–127. doi: 10.1016/j.jcmgh.2022.03.009
  • Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020 Feb 6;22(2):225–234. doi: 10.1038/s41556-020-0461-8
  • Liu Z, Zhang G, Huang S, et al. Induction of apoptosis in hematological cancer cells by dorsomorphin correlates with BAD upregulation. Biochem Biophys Res Commun. 2020 Feb;522(3):704–708. doi: 10.1016/j.bbrc.2019.11.157
  • Ali JL, Lagasse BJ, Minuk AJ, et al. Differential cellular responses induced by dorsomorphin and LDN-193189 in chemotherapy-sensitive and chemotherapy-resistant human epithelial ovarian cancer cells. Int J Cancer. 2015 Mar 26;136(5):E455–69. doi: 10.1002/ijc.29220
  • Liu X, Chhipa RR, Nakano I, et al. The AMPK inhibitor compound C is a Potent AMPK-Independent antiglioma agent. Mol Cancer Ther. 2014 Mar 1;13(3):596–605. doi: 10.1158/1535-7163.MCT-13-0579
  • Du D, Liu C, Qin M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022 Feb;12(2):558–580. doi: 10.1016/j.apsb.2021.09.019
  • Okano N, Naruge D, Kawai K, et al. First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2020 Oct;38(5):1495–1506. doi: 10.1007/s10637-020-00924-3
  • Che L, Paliogiannis P, Cigliano A, et al. Pathogenetic, prognostic, and therapeutic role of fatty acid synthase in human hepatocellular carcinoma. Front Oncol. 2019 Dec 11;9. doi: 10.3389/fonc.2019.01412
  • Lally JSV, Ghoshal S, DePeralta DK, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 2019 Jan;29(1):174–182.e5. doi: 10.1016/j.cmet.2018.08.020
  • Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets. 2017 Nov;21(11):1001–1016. doi: 10.1080/14728222.2017.1381087
  • Ho WJ, Zhu Q, Durham J, et al. Neoadjuvant cabozantinib and nivolumab convert locally advanced hepatocellular carcinoma into resectable disease with enhanced antitumor immunity. Nat Cancer. 2021 Jul 29;2(9):891–903. doi: 10.1038/s43018-021-00234-4
  • Chick RC, Ruff SM, Pawlik TM. Neoadjuvant systemic therapy for hepatocellular carcinoma. Front Immunol. 2024 Mar 1;15. doi: 10.3389/fimmu.2024.1355812
  • Facciorusso A, Del Prete V, Crucinio N, et al. Angiotensin receptor blockers improve survival outcomes after radiofrequency ablation in hepatocarcinoma patients. J Gastroenterol Hepatol. 2015 Nov 12;30(11):1643–1650. doi: 10.1111/jgh.12988
  • Casadei-Gardini A, Rimini M, Tada T, et al. Atezolizumab plus bevacizumab versus lenvatinib for unresectable hepatocellular carcinoma: a large real-life worldwide population. Eur J Cancer. 2023 Feb;180:9–20. doi: 10.1016/j.ejca.2022.11.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.