1,435
Views
6
CrossRef citations to date
0
Altmetric
Articles

The relation between semantic memory structure, associative abilities, and verbal and figural creativity

, , , , , , & show all
Pages 268-293 | Received 19 Dec 2019, Accepted 31 Aug 2020, Published online: 11 Sep 2020

References

  • Abraham, A., Rutter, B., Bantin, T., & Hermann, C. (2018). Creative conceptual expansion: A combined fMRI replication and extension study to examine individual differences in creativity. Neuropsychologia, 118(Pt A), 29–39. https://doi.org/10.1016/j.neuropsychologia.2018.05.004
  • Acar, S., & Runco, M. A. (2019). Divergent thinking: New methods, recent research, and extended theory. Psychology of Aesthetics, Creativity, and the Arts, 13(2), 153–158. https://doi.org/10.1037/aca0000231
  • Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity Research Journal, 23(2), 109–118. https://doi.org/10.1080/10400419.2011.571183
  • Aziz-Zadeh, L., Liew, S.-L., & Dandekar, F. (2013). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, 8(4), 475–480. https://doi.org/10.1093/scan/nss021
  • Balota, D. A., & Lorch, R. F. (1986). Depth of automatic spreading activation: Mediated priming effects in pronunciation but not in lexical decision. Journal of Experimental Psychology: Learning, Memory and Cognition, 12(3), 336–345. https://doi.org/10.1037/0278-7393.12.3.336
  • Baronchelli, A., Ferrer-I-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17(7), 348–360. https://doi.org/10.1016/j.tics.2013.04.010
  • Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2015). Reasoned connections: A dual-process perspective on creative thought. Thinking & Reasoning, 21(1), 61–75. https://doi.org/10.1080/13546783.2014.895915
  • Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964https://doi.org/10.1038/srep10964
  • Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative over time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity and the Arts, 6(4), 309–319. https://doi.org/10.1037/a0029171
  • Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186–1197. https://doi.org/10.3758/s13421-014-0428-8
  • Beckage, N., Smith, L., & Hills, T. T. (2011). Small worlds and semantic network growth in typical and late talkers. PLoS One, 6(5), e19348https://doi.org/10.1371/journal.pone.0019348
  • Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83. https://doi.org/10.1016/j.intell.2014.05.007
  • Benedek, M., Kenett, Y. N., Umdasch, K., Anaki, D., Faust, M., & Neubauer, A. C. (2017). How semantic memory structure and intelligence contribute to creative thought: a network science approach. Thinking & Reasoning, 23(2), 158–183. https://doi.org/10.1080/13546783.2016.1278034
  • Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity and the Arts, 6(3), 273–281. https://doi.org/10.1037/a0027059
  • Bernard, M., Kenett, Y. N., Ovando-Tellez, M. P., Benedek, M., & Volle, E. (2019). Building individual semantic networks and exploring thei relationship with creativity. Paper presented at the The 41st Annual Meeting of the Cognitive Science Socie, Montreal QB, Canada.
  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527–536. https://doi.org/10.1016/j.tics.2011.10.001
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4-5), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009
  • Chen, Q., Beaty, R. E., Cui, Z., Sun, J., He, H., Zhuang, K., Ren, Z., Liu, G., & Qiu, J. (2019). Brain hemispheric involvement in visuospatial and verbal divergent thinking. NeuroImage, 202, 116065. https://doi.org/10.1016/j.neuroimage.2019.116065
  • Christensen, A. P., Benedek, M., Silvia, P. J., & Beaty, R. E. (2019). Executive and default network connectivity reflects conceptual interference during creative imagery generation. PsyArXiv.
  • Chrysikou, E. G., & Thompson‐Schill, S. L. (2011). Dissociable brain states linked to common and creative object use. Human Brain Mapping, 32(4), 665–675. https://doi.org/10.1002/hbm.21056
  • Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428. https://doi.org/10.1037/0033-295X.82.6.407
  • Connolly, A. C., Gleitman, L. R., & Thompson-Schill, S. L. (2007). Effect of congenital blindness on the semantic representation of some everyday concepts. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8241–8246. https://doi.org/10.1073/pnas.0702812104
  • Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 25–32. https://doi.org/10.1016/j.intell.2016.03.005
  • Forthmann, B., Oyebade, O., Ojo, A., Günther, F., & Holling, H. (2019). Application of latent semantic analysis to divergent thinking is biased by elaboration. The Journal of Creative Behavior, 53(4), 559–575. https://doi.org/10.1002/jocb.240
  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002
  • Gabora, L. (2010). Revenge of the “Neurds”: Characterizing creative thought in terms of the structure and Ddynamics of memory. Creatvity Research Journal, 22(1), 1–13. i https://doi.org/10.1080/10400410903579494
  • Gray, K., Anderson, S., Chen, E. E., Kelly, J. M., Christian, M. S., Patrick, J., Huang, L., Kenett, Y. N., & Lewis, K. (2019). "Forward flow": A new measure to quantify free thought and predict creativity”: . The American Psychologist, 74(5), 539–554. https://doi.org/10.1037/amp0000391
  • Green, A. E. (2016). Creativity, within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25(1), 28–35. https://doi.org/10.1177/0963721415618485
  • Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex (New York, N.Y.: 1991)), 20(1), 70–76. https://doi.org/10.1093/cercor/bhp081
  • Hamel, R., & Schmittmann, V. D. (2006). The 20-minute version as a predictor of the raven advanced progressive matrices test. Educational and Psychological Measurement, 66(6), 1039–1046. https://doi.org/10.1177/0013164406288169
  • Hass, R. W. (2017a). Semantic search during divergent thinking. Cognition, 166, 344–357. https://doi.org/10.1016/j.cognition.2017.05.039
  • Hass, R. W. (2017b). Tracking the dynamics of divergent thinking via semantic distance: Analytic methods and theoretical implications. Memory & Cognition, 45(2), 233–244. https://doi.org/10.3758/s13421-016-0659-y
  • Heinen, D. J. P., & Johnson, D. R. (2018). Semantic distance: An automated measure of creativity that is novel and appropriate. Psychology of Aesthetics, Creativity, and the Arts, 12(2), 144–156. https://doi.org/10.1037/aca0000125
  • Henley, N. M. (1969). A psychological study of the semantics of animal terms. Journal of Verbal Learning and Verbal Behavior, 8(2), 176–184. https://doi.org/10.1016/S0022-5371(69)80058-7
  • Holbert, R. L., & Stephenson, M. T. (2002). Structural Equation Modeling in the Communication Sciences, 1995–2000. Human Communication Research, 28(4), 531–551. https://doi.org/10.1111/j.1468-2958.2002.tb00822.x
  • Hoyle, R. H., & Kenny, D. A. (1999). Sample size, reliability, and tests of statistical mediation. In R. H. Hoyle (Ed.), Statistical strategies for small sample research. (pp. 195–222): Sage.
  • Huang, P., Qiu, L., Shen, L., Zhang, Y., Song, Z., Qi, Z., Gong, Q., & Xie, P. (2013). Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Human Brain Mapping, 34(10), 2724–2732. https://doi.org/10.1002/hbm.22093
  • Jauk, E. (2019). A bio-psycho-behavioral model of creativity. Current Opinion in Behavioral Sciences, 27, 1–6. https://doi.org/10.1016/j.cobeha.2018.08.012
  • Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41(4), 212–221. https://doi.org/10.1016/j.intell.2013.03.003
  • Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality, 28(1), 95–105. https://doi.org/10.1002/per.1941
  • Karuza, E. A., Thompson-Schill, S. L., & Bassett, D. S. (2016). Local patterns to global architectures: Influences of network topology on human learning. Trends in Cognitive Sciences, 20(8), 629–640. https://doi.org/10.1016/j.tics.2016.06.003
  • Kenett, Y. N. (2018a). Going the extra creative mile: The role of semantic distance in creativity – theory, research, and measurement. In R. E. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 233–248). Cambridge University Press.
  • Kenett, Y. N. (2018b). Investigating creativity from a semantic network perspective. In Z. Kapoula, E. Volle, J. Renoult, & M. Andreatta (Eds.), Exploring transdisciplinarity in art and sciences (pp. 49–75). Springer International Publishing.
  • Kenett, Y. N. (2019). What can quantitative measures of semantic distance tell us about creativity?. Current Opinion in Behavioral Sciences, 27, 11–16. https://doi.org/10.1016/j.cobeha.2018.08.010
  • Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8(407), 407–416. https://doi.org/10.3389/fnhum.2014.00407
  • Kenett, Y. N., Austerweil, J. L. (2016). Examining search processes in low and high creative individuals with random walks. Paper presented at the Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Austin, TX.
  • Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 377–388. https://doi.org/10.1037/aca0000056
  • Kenett, Y. N., & Faust, M. (2019). A semantic network cartography of the creative mind. Trends in Cognitive Sciences, 23(4), 271–274. https://doi.org/10.1016/j.tics.2019.01.007
  • Kenett, Y. N., Levi, E., Anaki, D., & Faust, M. (2017). The semantic distance task: Quantifying semantic distance with semantic network path length. Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(9), 1470–1489. https://doi.org/10.1037/xlm0000391
  • Kenett, Y. N., Levy, O., Kenett, D. Y., Stanley, H. E., Faust, M., & Havlin, S. (2018). Flexibility of thought in high creative individuals represented by percolation analysis. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 867–872. https://doi.org/10.1073/pnas.1717362115
  • Kenett, Y. N., Medaglia, J. D., Beaty, R. E., Chen, Q., Betzel, R. F., Thompson-Schill, S. L., & Qiu, J. (2018). Driving the brain towards creativity and intelligence: A network control theory analysis. Neuropsychologia, 118(Pt A), 79–90. https://doi.org/10.1016/j.neuropsychologia.2018.01.001
  • Kleinmintz, O. M., Abecasis, D., Tauber, A., Geva, A., Chistyakov, A. V., Kreinin, I., Klein, E., & Shamay-Tsoory, S. G. (2018). Participation of the left inferior frontal gyrus in human originality. Brain Structure & Function, 223(1), 329–341. https://doi.org/10.1007/s00429-017-1500-5
  • Kleinmintz, O. M., Ivancovsky, T., & Shamay-Tsoory, S. G. (2019). The twofold model of creativity: the neural underpinnings of the generation and evaluation of creative ideas. Current Opinion in Behavioral Sciences, 27, 131–138. https://doi.org/10.1016/j.cobeha.2018.11.004
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.
  • Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30(5), 1678–1690. https://doi.org/10.1002/hbm.20633
  • Kriegeskorte, N., & Mur, M. (2012). Inverse MDS: Inferring dissimilarity structure from multiple item arrangements. Frontiers in Psychology, 3(245), 245https://doi.org/10.3389/fpsyg.2012.00245
  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701
  • Li, W., Yang, J., Zhang, Q., Li, G., & Qiu, J. (2016). The association between resting functional connectivity and visual creativity. Scientific Reports, 6, 25395https://doi.org/10.1038/srep25395
  • Mandera, P., Keuleers, E., & Brysbaert, M. (2015). How useful are corpus-based methods for extrapolating psycholinguistic variables? Quarterly Journal of Experimental Psychology (Psychology), 68(8), 1623–1642. https://doi.org/10.1080/17470218.2014.988735
  • Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92, 57–78. https://doi.org/10.1016/j.jml.2016.04.001
  • Mednick, S., A. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220–232. https://doi.org/10.1037/h0048850
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Paper presented at the Advances in Neural Information Processing Systems.
  • Muthén, L. K., & Muthén, B. O. (2012). Mplus: Statistical analysis with latent variables. User’s guide. Author.
  • Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103
  • Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different?: Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39(1), 36–45. https://doi.org/10.1016/j.intell.2010.11.002
  • Nusbaum, E. C., Silvia, P. J., & Beaty, R. E. (2014). Ready, set, create: What instructing people to “be creative” reveals about the meaning and mechanisms of divergent thinking. Psychology of Aesthetics, Creativity, and the Arts, 8(4), 423–432. https://doi.org/10.1037/a0036549
  • Palmiero, M., Giulianella, L., Guariglia, P., Boccia, M., D'Amico, S., & Piccardi, L. (2019). The dancers’ visuospatial body map explains their enhanced divergence in the production of motor forms: Evidence in the early development. Frontiers in Psychology, 10(768), 1274. https://doi.org/10.3389/fpsyg.2019.00768
  • Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46(3), 641–659. https://doi.org/10.3758/s13428-013-0401-7
  • Raven, J. C., Court, J. H., Raven, J., & Kratzmeier, H. (1994). Advanced progressive matrices:[APM; RAVEN-Matrizen-Test]: Beltz.
  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
  • Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1), 66–75. https://doi.org/10.1080/10400419.2012.652929
  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96. https://doi.org/10.1080/10400419.2012.650092
  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user's guide. Psychology Software Tools, Inc.
  • Shen, W., Yuan, Y., Liu, C., & Luo, J. (2017). The roles of the temporal lobe in creative insight: an integrated review. Thinking & Reasoning, 23(4), 321–375. https://doi.org/10.1080/13546783.2017.1308885
  • Siew, C. S. Q. (2018). The orthographic similarity structure of English words: Insights from network science. Applied Network Science, 3(1), 13https://doi.org/10.1007/s41109-018-0068-1
  • Siew, C. S. Q., Wulff, D. U., Beckage, N. M., & Kenett, Y. N. (2019). Cognitive network science: A review of research on cognition through the lens of network representations, processes, and dynamics. Complexity, 2019, 1–24. https://doi.org/10.1155/2019/2108423
  • Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41(5), 328–340. https://doi.org/10.1016/j.intell.2013.05.004
  • Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., Martinez, J. L., & Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 68–85. https://doi.org/10.1037/1931-3896.2.2.68
  • Sowden, P. T., Pringle, A., & Gabora, L. (2015). The shifting sands of creative thinking: Connections to dual-process theory. Thinking & Reasoning, 21(1), 40–60. https://doi.org/10.1080/13546783.2014.885464
  • Stella, M., & Kenett, Y. N. (2019). Viability in multiplex lexical networks and machine learning characterizes human creativity. Big Data and Cognitive Computing, 3(3), 45. https://doi.org/10.3390/bdcc3030045
  • Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677–688. https://doi.org/10.1037//0003-066x.51.7.677
  • Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognitive Science, 29(1), 41–78. https://doi.org/10.1207/s15516709cog2901_3
  • Strang, A., Haynes, O., Cahill, N. D., & Narayan, D. A. (2018). Generalized relationships between characteristic path length, efficiency, clustering coefficients, and density. Social Network Analysis and Mining, 8(1), 14. https://doi.org/10.1007/s13278-018-0492-3
  • Sun, J., Liu, Z., Rolls, E. T., Chen, Q., Yao, Y., Yang, W., Wei, D., Zhang, Q., Zhang, J., Feng, J., & Qiu, J. (2019). Verbal creativity correlates with the temporal variability of brain networks during the resting state. Cerebral Cortex (New York, N.Y.: 1991)), 29(3), 1047–1058. https://doi.org/10.1093/cercor/bhy010
  • Torrance, E. P. (1974). The torrance tests of creative thinking-norms-technical manual research edition-verbal tests. Forms A and B- Figural Tests, Forms A and B. Personnel Press.
  • Vitevitch, M. S. (2008). What can graph theory tell us about word learning and lexical retrieval. Journal of Speech, Language, and Hearing Research: JSLHR, 51(2), 408–422. https://doi.org/10.1044/1092-4388(2008/030)
  • Vitevitch, M. S., Chan, K. Y., & Goldstein, R. (2014). Insights into failed lexical retrieval from network science. Cognitive Psychology, 68, 1–32. https://doi.org/10.1016/j.cogpsych.2013.10.002
  • Volle, E. (2018). Associative and controlled cognition in divergent thinking: Theoretical, experimental, neuroimaging evidence, and new directions. In R. E. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 333–362). Cambridge University Press.
  • Wang, X., Wu, W., Ling, Z., Xu, Y., Fang, Y., Wang, X., Binder, J. R., Men, W., Gao, J.-H., & Bi, Y. (2018). Organizational principles of abstract words in the human brain. Cerebral Cortex (New York, N.Y.: 1991)), 28(12), 4305–4318. https://doi.org/10.1093/cercor/bhx283
  • White, H. A., & Shah, P. (2006). Uninhibited imaginations: Creativity in adults with attention-deficit/hyperactivity disorder. Personality and Individual Differences, 40(6), 1121–1131. https://doi.org/10.1016/j.paid.2005.11.007
  • Wulff, D. U., De Deyne, S., Jones, M. N., Mata, R., & Consortium, T. A. L, Aging Lexicon Consortium (2019). New perspectives on the aging lexicon. Trends in Cognitive Sciences, 23(8), 686–698. https://doi.org/10.1016/j.tics.2019.05.003
  • Ye, R., Hong, D., & Torrance, P. E. (1988). Cross cultural comparion of creative thinking between Chinese and American students using Torrance Test. Chinese Journal of Applied Psychology, 3(3), 22–29.
  • Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: An optimal voxel-based morphometry study. PloS One, 8(11), e79272https://doi.org/10.1371/journal.pone.0079272
  • Zhu, W., Chen, Q., Xia, L., Beaty, R. E., Yang, W., Tian, F., Sun, J., Cao, G., Zhang, Q., Chen, X., & Qiu, J. (2017). Common and distinct brain networks underlying verbal and visual creativity. Human Brain Mapping, 38(4), 2094–2111. https://doi.org/10.1002/hbm.23507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.