Publication Cover
Laterality
Asymmetries of Brain, Behaviour, and Cognition
Volume 20, 2015 - Issue 5
198
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Resting EEG and behavioural correlates of interhemispheric transfer times

, , &
Pages 618-638 | Received 29 Oct 2014, Accepted 17 Mar 2015, Published online: 17 Apr 2015

REFERENCES

  • Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598, 143–153. doi:10.1016/0006-8993(92)90178-C
  • Barkley, R. A., & Murphy, K. R. (1998). Attention deficit hyperactivity disorder: A clinical workbook. New York, NY: Guilford Press.
  • Barnett, K. J., Corballis, M. C., & Kirk, I. J. (2005). Symmetry of callosal information transfer in schizophrenia: A preliminary study. Schizophrenia Research, 74, 171–178. doi:10.1016/j.schres.2004.08.007
  • Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241–248. doi:10.1016/S0167-8760(00)00145-8
  • Beeman, M., Friedman, R. B., Grafman, J., Perez, E., Diamond, S., & Lindsay, M. B. (1994). Summation priming and coarse semantic coding in the right hemisphere. Journal of Cognitive Neuroscience, 6(1), 26–45. doi:10.1016/0093-934X(89)90087-4
  • Bisiacchi, P., Marzi, C. A., Nicoletti, R., Carena, G., Mucignat, C., & Tomaiuolo, F. (1994). Left-right asymmetry of callosal transfer in normal human subjects. Behavioural Brain Research, 64, 173–178. doi:10.1016/0166-4328(94)90129-5
  • Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35, 634–639.
  • Braun, C. M. J., Villeneuve, L., & Achim, A. (1996). Balance of cost in interhemispheric relay in the Poffenberger paradigm: Evidence from omission errors. Neuropsychology, 10, 565–572. doi:10.1037/0894-4105.10.4.565
  • Brown, W. S., Larson, E. B., & Jeeves, M. A. (1994). Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials. Neuropsychologia, 32, 439–448. doi:10.1016/0028-3932(94)90089-2
  • Brysbaert, M. (1994). Lateral preferences and visual field asymmetries: Appearances may have been overstated. Cortex, 30, 413–429. doi:10.1016/S0010-9452(13)80338-3
  • Cappa, S. F., Guariglia, C., Messa, C., Pizzamiglio, L., & Zoccolotti, P. (1991). Computed tomography correlates of chronic unilateral neglect. Neuropsychology, 5, 195–204. doi:10.1037/0894-4105.5.3.195
  • Chiarello, C. (1985). Hemisphere dynamics in lexical access: Automatic and controlled priming. Brain and Language, 26, 146–172. doi:10.1016/0093-934X(85)90034-3
  • Chiarello, C., Burgess, C., Richards, L., & Pollock, A. (1990). Semantic and associative priming in the cerebral hemispheres: Some words do, some words don’t … sometimes, some places. Brain and Language, 38(1), 75–104. doi:10.1016/0093-934X(90)90103-N
  • Çiçek, M., Deouell, L. Y., & Knight, R. T. (2009). Brain activity during landmark and line bisection tasks. Frontiers of Human Neuroscience, 3, 7. doi:10.3389/neuro.09.007.2009
  • Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Brown, C. R. (2002). EEG evidence for a new conceptualisation of attention deficit hyperactivity disorder. Clinical Neurophysiology, 113, 1036–1044. doi:10.1016/S1388-2457(02)00115-3
  • Damasio, A. R., Damasio, H., & Chui, H. C. (1980). Neglect following damage to frontal lobe or basal ganglia. Neuropsychologia, 18(2), 123–132. doi:10.1016/0028-3932(80)90058-5
  • Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., Roshan, L., & Chen, R. (2002). The mechanisms of interhemispheric inhibition in the human motor cortex. The Journal of Physiology, 543, 317–326. doi:10.1113/jphysiol.2002.017673
  • Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., & Heine, C. (2002). EEG alpha power and intelligence. Intelligence, 30, 289–302. doi:10.1016/S0160-2896(01)00101-5
  • Engel, A., & Fries, P. (2010). Beta-band oscillations—Signaling the status quo? Current Opinion in Neurobiology, 20, 156–165. doi:10.1016/j.conb.2010.02.015
  • Faust, M., & Kenett, Y. N. (2014). Rigidity, chaos, and integration: Hemispheric interaction and individual differences in metaphor comprehension. Frontiers in Human Neuroscience, 8, 1–10. doi:10.3389/fnhum.2014.00511
  • Fendrich, R., Hutsler, J. J., & Gazzaniga, M. S. (2004). Visual and tactile interhemispheric transfer compared with the method of the Poffenberger. Experimental Brain Research, 158, 67–74. doi:10.1007/s00221-004-1873-6
  • Fleck, J. I., Green, D. L., Stevenson, J. L., Payne, L., Bowden, E. M., Jung-Beeman, M., & Kounios, J. (2008). The transliminal brain at rest: Baseline EEG, unusual experiences, and access to unconscious mental activity. Cortex, 44, 1353–1363. doi:10.1016/j.cortex.2007.08.024
  • Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72, 561–582.
  • Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, 1–10. doi:10.3389/fnint.2013.00083
  • Hernandez, K. O., Woodall, K. D., & Simon-Dack, S. L. (2015). Left hemispheric contributions to temporal perception: A resting electroencephalographic study. Neuroreport, 26(3), 163–166. doi:10.1097/WNR.0000000000000319
  • Holtgraves, T. (2013). Cognitive consequences of individual differences in arousal asymmetry. Brain and Cognition, 83(1), 21–26. doi:10.1016/j.bandc.2013.06.002
  • Hoptman, M. J., & Davidson, R. J. (1998). Baseline EEG asymmetries and performance on neuropsychological tasks. Neuropsychologia, 36, 1343–1353. doi:10.1016/S0028-3932(98)00023-2
  • Iacoboni, M., & Zaidel, E. (2000). Crossed–uncrossed difference in simple reaction times to lateralized flashes: Between- and within-subjects variability. Neuropsychologia, 38, 535–541. doi:10.1016/S0028-3932(99)00121-9
  • Iacoboni, M., & Zaidel, E. (2003). Interhemispheric visuomotor integration in humans: The effect of redundant targets. European Journal of Neuroscience, 17, 1981–1986. doi:10.1046/j.1460-9568.2003.02602.x
  • Ipata, A., Girelli, M., Miniussi, C., & Marzi, C. A. (1997). Interhemispheric transfer of visual information in humans: The role of different callosal channels. Archives Italiennes de Biologie, 135, 169–182.
  • Jaušovec, N., & Jaušovec, K. (2000). Differences in resting EEG related to ability. Brain Topography, 12, 229–240.
  • Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93–110. doi:10.1016/S0028-3932(99)00045-7
  • Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 712–718. doi:10.1016/j.tics.2005.09.009
  • Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience, 26, 1669–1672. doi:10.1523/JNEUROSCI.3737-05c.2006
  • Kaluzny, P., Palmeri, A., & Wiesendanger, M. (1994). The problem of bimanual coupling: A reaction time study of simple unimanual and bimanual finger responses. Encephalography and Clinical Neurophysiology, 93, 450–458. doi:10.1016/0168-5597(94)90153-8
  • Kam, J. W., Bolbecker, A. R., O’Donnell, B. F., Hetrick, W. P., & Brenner, C. A. (2013). Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia. Journal of Psychiatry Research, 47, 1893–1901. doi:10.1016/j.jpsychires.2013.09.009
  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195. doi:10.1016/S0165-0173(98)00056-3
  • Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., & Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46, 281–291. doi:10.1016/j.neuropsychologia.2007.07.013
  • Lines, C. R., Rugg, M. D., & Milner, A. D. (1984). The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time. Experimental Brain Research, 57(1), 89–98. doi:10.1007/BF00231135
  • Lines, C. R., Rugg, M. D., & Milner, A. D. (1992). The effect of stimulus intensity on evoked potential estimates of interhemispheric transmission time. Experimental Brain Research, 57, 89–98.
  • Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences, 104, 13170–13175. doi:10.1073/pnas.0700668104
  • Marzi, C. A. (2010). Asymmetry of interhemispheric communication. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 433–438. doi:10.1002/wcs.53
  • Marzi, C. A., Bisiacchi, P., & Nicoletti, R. (1991). Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia, 29, 1163–1177. doi:10.1016/0028-3932(91)90031-3
  • Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242. doi:10.1016/0926-6410(96)00009-2
  • Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232. doi:10.1037/h0048850
  • Niedermeyer, E., & Da Silva, F. L. (Eds.). (1999). Electroencephalography: Basic principles, clinical applications, and related fields. Philadelphia, PA: Williams & Wilkins.
  • Nuwer, M. R. (1988). Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. Journal of Clinical Neurophysiology, 5(1), 1–44. doi:10.1097/00004691-198801000-00001
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113. doi:10.1016/0028-3932(71)90067-4
  • Peters, M. (1983). RT to tactical stimuli presented ipsi- and contralaterally to the responding hand. Quarterly Journal of Experimental Psychology, 35A, 397–410.
  • Pignatelli, M., Beyeler, A., & Leinekugel, X. (2012). Neural circuits underlying the generation of theta oscillations. Journal of Physiology-Paris, 106(34), 81–92. doi:10.1016/j.jphysparis.2011.09.007
  • Poffenberger, A. T. (1912). Reaction time to retinal stimulation, with special reference to the time lost in conduction through nerve centers. Archives of Psychology, 23, 1–73.
  • Porjesz, B., Almasy, L., Edenberg, H., Wang, K., Chorliam, D., Foroud, T., … Begleiter, H. (2002). Linkage disequilbrium between the beta frequency of the human EEG and a GABAA receptor gene locus. PNAS, 99, 3729–3733. doi:10.1073/pnas.052716399
  • Rolfe, M. H. S., Kirk, I. J., & Waldie, K. E. (2007). Interhemispheric callosal transfer in adults with attention-deficit/hyperactivity disorder: An event-related potential study. Neuroreport, 18, 255–259. doi:10.1097/WNR.0b013e328011e6f9
  • Saron, C. D., & Davidson, R. J. (1989). Visual evoked potential measures of interhemispheric transfer time in humans. Behavioral Neuroscience, 103, 1115–1138. doi:10.1037/0735-7044.103.5.1115
  • Saron, C. D., Foxe, J. J., Schroeder, C. E., & Vaughan, H. G. (2003a). Complexities of interhemispheric communication in sensorimotor tasks revealed by high-density event-related potential mapping. In K. Hugdahl & R. J. Davidson (Eds.), The asymmetrical brain (pp. 341–408). Cambridge, MA: MIT Press.
  • Saron, C. D., Foxe, J. J., Simpson, G. V., & Vaughan, H. G. (2003b). Interhemispheric visuomotor activation: Spatiotemporal electrophysiology related to reaction time. In E. Zaidel & M. Iacoboni (Eds.), The parallel brain: The cognitive neuroscience of the corpus callosum (pp. 171–219). Cambridge, MA: MIT Press.
  • Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242–251. doi:10.1016/j.ijpsycho.2007.05.017
  • Simon-Dack, S. L., Holtgraves, T., Marsh, L. M., & Fogle, K. L. (2013). Resting electroencephalography correlates of pseudoneglect: An individual differences approach. Neuroreport, 24, 827–830. doi:10.1097/WNR.0b013e328364125b
  • Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation, 21, 3–33. doi:10.1007/BF02214147
  • Thut, G., Hauert, C.-A., Morand, S., Seeck, M., Landis, T., & Michel, C. (1999). Evidence for interhemispheric motor-level transfer in a simple reaction time task: An EEG study. Experimental Brain Research, 128, 256–261. doi:10.1007/s002210050846
  • Treisman, M., Faulkner, A., Naish, P. L. N., & Brogan, D. (1990). The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception, 19, 705–743. doi:10.1068/p190705
  • Vallar, G., & Perani, D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia, 24, 609–622. doi:10.1016/0028-3932(86)90001-1
  • Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. doi:10.1037/0022-3514.54.6.1063
  • Weber, B., Treyer, V., Oberholzer, N., Jaermann, T., Boesiger, P., Brugger, P., … Marzi, C. A. (2005). Attention and interhemispheric transfer: A behavioral and fMRI study. Journal of Cognitive Neuroscience, 17(1), 113–123. doi:10.1006/nimg.2002.1104
  • Wheeler, R. E., Davidson, R. J., & Tomarken, A. J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30, 82–89. doi:10.1111/j.1469-8986.1993.tb03207

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.