Publication Cover
Laterality
Asymmetries of Brain, Behaviour, and Cognition
Volume 24, 2019 - Issue 6
1,759
Views
31
CrossRef citations to date
0
Altmetric
Articles

Paw preferences in cats and dogs: Meta-analysis

ORCID Icon, , &
Pages 647-677 | Received 07 Aug 2018, Accepted 31 Jan 2019, Published online: 10 Feb 2019

References

  • Artelle, K. A., Dumoulin, L. K., & Reimchen, T. E. (2011). Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica. Laterality, 16(2), 129–135.
  • Austin, N. P., & Rogers, L. J. (2012). Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses, Equus caballus. Animal Behaviour, 83(1), 239–247.
  • Aydinlioglu, A. A., Arslanirli, K. A., Riza Erdogan, M. A., Ragbetli, M. C., Keleş, P., & Diyarbakirli, S. (2000). The relationship of callosal anatomy to paw preference in dogs. European Journal of Morphology, 38(2), 128–133.
  • Aydinlioglu, A., Arslan, K., Cengiz, N., Ragbetli, M., & Erdogan, E. (2006). The relationships of dog hippocampus to sex and paw preference. The International Journal of Neuroscience, 116(1), 77–88.
  • Barnard, S., Wells, D. L., Hepper, P. G., & Milligan, A. D. S. (2017). Association between lateral bias and personality traits in the domestic dog (Canis familiaris). Journal of Comparative Psychology, 131(3), 246–256.
  • Bisazza, A., de Santi, A., & Vallortigara, G. (1999). Laterality and cooperation: Mosquitofish move closer to a predator when the companion is on their left side. Animal Behaviour, 57(5), 1145–1149.
  • Bradshaw, J. W. S. (2006). The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). The Journal of Nutrition, 136(7 Suppl.), 1927S–1931S.
  • Brandler, W. M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 20(2), 83–90.
  • Branson, N. J. (2006). Lateralization and stress Response in Canis familiaris: Paw preference and reacitivity to Acoustic stimuli. University of New England.
  • Branson, N. J., & Rogers, L. J. (2006). Relationship between paw preference strength and noise phobia in Canis familiaris. Journal of Comparative Psychology, 120(3), 176–183.
  • Burgess, J. W., & Villablanca, J. R. (1986). Recovery of function after neonatal or adult hemispherectomy in cats. II. Limb bias and development, paw usage, locomotion and rehabilitative effects of exercise. Behavioural Brain Research, 20(1), 1–17.
  • Calişkan, S., & Tan, U. (1990a). The relationship between the degree of paw preference and excitability of motor neurons innervating foreleg flexors in right- and left-preferent cats. The International Journal of Neuroscience, 53(2–4), 173–178.
  • Calişkan, S., & Tan, U. (1990b). There is an inverse relationship between the reflex size from wrist flexors and paw preference in spinal cats. The International Journal of Neuroscience, 53(2–4), 69–74.
  • Carleton-Prangnell, L. (2012). The presence of Testosterone in male domestic dogs (Canis familiaris) and the effect on Paw preference. University of Edinburgh.
  • Cochet, H., & Byrne, R. W. (2013). Evolutionary origins of human handedness: Evaluating contrasting hypotheses. Animal Cognition, 16(4), 531–542.
  • Cole, J. (1955). Paw preference in cats related to hand preference in animals and men. Journal of Comparative and Physiological Psychology, 48(2), 137–140.
  • Crow, T. J. (2008). The ‘big bang’ theory of the origin of psychosis and the faculty of language. Schizophrenia Research, 102(1–3), 31–52.
  • Dane, S., & Tan, U. (1992). Relation of brain weight to body weight in cats to sex and paw preferences: Anomalous results in left-preferent cats. The International Journal of Neuroscience, 62(1–2), 75–80.
  • Fabre-Thorpe, M., Fagot, J., Lorincz, E., Levesque, F., & Vauclair, J. (1993). Laterality in cats: Paw preference and performance in a visuomotor activity. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 29(1), 15–24.
  • Fagard, J., Chapelain, A., & Bonnet, P. (2015). How should “ambidexterity” be estimated? Laterality, 20(5), 543–570.
  • Faurie, C., & Raymond, M. (2004). Handedness frequency over more than ten thousand years. Proceedings of Biological Sciences, 271(Suppl. 3), S43–S45.
  • Fitch, W. T., & Braccini, S. N. (2013). Primate laterality and the biology and evolution of human handedness: A review and synthesis. Annals of the New York Academy of Sciences, 1288, 70–85.
  • Forward, E., Warren, J. M., & Hara, K. (1962). The effects of unilateral lesions in sensorimotor cortex on manipulation by cats. Journal of Comparative and Physiological Psychology, 55, 1130–1135.
  • Ghirlanda, S., Frasnelli, E., & Vallortigara, G. (2009). Intraspecific competition and coordination in the evolution of lateralization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1519), 861–866.
  • Gonyea, W. J. (1978). Functional implications of felid forelimb anatomy. Acta Anatomica, 102(2), 111–121.
  • Gordon, D. J., & Rogers, L. J. (2010). Differences in social and vocal behavior between left- and right-handed common marmosets (Callithrix jacchus). Journal of Comparative Psychology, 124(4), 402–411.
  • Gordon, D. J., & Rogers, L. J. (2015). Cognitive bias, hand preference and welfare of common marmosets. Behavioural Brain Research, 287, 100–108.
  • Graystyan, A., & Molnar, L. (1954a). A macska kezüségének kĭsérletes vizsgálata [Experimental study of handedness in cat]. Kiserletes Orvostudomany, 6(6), 541–548.
  • Graystyan, A., & Molnar, L. (1954b). Experimentelle Untersuchungen über die händigkeit der Katze [Experimental studies on the handedness of cat]. Acta Physiologica Academiae Scientiarum Hungaricae, 6(2–3), 301–311.
  • Güntürkün, O., & Ocklenburg, S. (2017). Ontogenesis of lateralization. Neuron, 94(2), 249–263.
  • Guo, K., Meints, K., Hall, C., Hall, S., & Mills, D. (2009). Left gaze bias in humans, rhesus monkeys and domestic dogs. Animal Cognition, 12(3), 409–418.
  • Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3(4), 486–504.
  • Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.
  • Hook, M. A., & Rogers, L. J. (2008). Visuospatial reaching preferences of common marmosets (Callithrix jacchus): An assessment of individual biases across a variety of tasks. Journal of Comparative Psychology, 122(1), 41–51.
  • Hook-Costigan, M. A., & Rogers, L. J. (1998). Eye preferences in common marmosets (Callithrix jacchus): Influence of age, stimulus, and hand preference. Laterality, 3(2), 109–130.
  • Hopkins, W. D. (2006). Chimpanzee right-handedness: Internal and external validity in the assessment of hand use. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 42(1), 90–93.
  • Hopkins, W. D. (2013). Neuroanatomical asymmetries and handedness in chimpanzees (Pan troglodytes): A case for continuity in the evolution of hemispheric specialization. Annals of the New York Academy of Sciences, 1288, 17–35.
  • Johnston, A. M., Holden, P. C., & Santos, L. R. (2017). Exploring the evolutionary origins of overimitation: A comparison across domesticated and non-domesticated canids. Developmental Science, 20(4), e12460.
  • Johnston, A. M., McAuliffe, K., & Santos, L. R. (2015). Another way to learn about teaching: What dogs can tell us about the evolution of pedagogy. The Behavioral and Brain Sciences, 38, e44.
  • Kleiman, D. G., & Eisenberg, J. F. (1973). Comparisons of canid and felid social systems from an evolutionary perspective. Animal Behaviour, 21(4), 637–659.
  • Konerding, W. S., Hedrich, H.-J., Bleich, E., & Zimmermann, E. (2012). Paw preference is not affected by postural demand in a nonprimate mammal (Felis silvestris catus). Journal of Comparative Psychology, 126(1), 15–22.
  • Landsberg, G. M., Hunthausen, W. L., & Ackerman, L. J. (2013). Behavioural problems of the dog and cat (3rd ed.). Edinburgh: Saunders.
  • Lippolis, G., Bisazza, A., Rogers, L. J., & Vallortigara, G. (2002). Lateralisation of predator avoidance responses in three species of toads. Laterality, 7(2), 163–183.
  • Lippolis, G., Joss, J. M. P., & Rogers, L. J. (2009). Australian lungfish (Neoceratodus forsteri): A missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain, Behavior and Evolution, 73(4), 295–303.
  • Lorincz, E., & Fabre-Thorpe, M. (1996). Shift of laterality and compared analysis of paw performances in cats during practice of a visuomotor task. Journal of Comparative Psychology, 110(3), 307–315.
  • MacNeilage, P. F. (2013). Vertebrate whole-body-action asymmetries and the evolution of right handedness: A comparison between humans and marine mammals. Developmental Psychobiology, 55(6), 577–587.
  • MacNeilage, P. F. (2014). Evolution of the strongest vertebrate rightward action asymmetries: Marine mammal sidedness and human handedness. Psychological Bulletin, 140(2), 587–609.
  • Markou, P., Ahtam, B., & Papadatou-Pastou, M. (2017). Elevated levels of a typical handedness in autism: Meta-analyses. Neuropsychology Review, 27(3), 258–283.
  • Marshall-Pescini, S., Barnard, S., Branson, N. J., & Valsecchi, P. (2013). The effect of preferential paw usage on dogs’ (Canis familiaris) performance in a manipulative problem-solving task. Behavioural Processes, 100, 40–43.
  • McDowell, L. J., Wells, D. L., & Hepper, P. G. (2018). Lateralization of spontaneous behaviours in the domestic cat, Felis silvestris. Animal Behaviour, 135, 37–43.
  • McDowell, L. J., Wells, D. L., Hepper, P. G., & Dempster, M. (2016). Lateral bias and temperament in the domestic cat (Felis silvestris). Journal of Comparative Psychology, 130(4), 313–320.
  • McGreevy, P. D., Brueckner, A., Thomson, P. C., & Branson, N. J. (2010). Motor laterality in 4 breeds of dog. Journal of Veterinary Behavior: Clinical Applications and Research, 5(6), 318–323.
  • Medland, S. E., Duffy, D. L., Wright, M. J., Geffen, G. M., Hay, D. A., Levy, F., … Boomsma, D. I. (2009). Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia, 47(2), 330–337.
  • Meguerditchian, A., Phillips, K. A., Chapelain, A., Mahovetz, L. M., Milne, S., Stoinski, T., … Hopkins, W. D. (2015). Handedness for Unimanual Grasping in 564 Great Apes: The effect on Grip Morphology and a comparison with hand Use for a Bimanual Coordinated task. Frontiers in Psychology, 6, 1794.
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269, W64.
  • Murray, D. L., Boutin, S., O'Donoghue, M., & Nams, V. O. (1995). Hunting behaviour of a sympatric felid and canid in relation to vegetative cover. Animal Behaviour, 50(5), 1203–1210.
  • Ntolka, E., & Papadatou-Pastou, M. (2018). Right-handers have negligibly higher IQ scores than left-handers: Systematic review and meta-analyses. Neuroscience and Biobehavioral Reviews, 84, 376–393.
  • Ocklenburg, S., Beste, C., & Güntürkün, O. (2013). Handedness: A neurogenetic shift of perspective. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2788–2793.
  • Ocklenburg, S., & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3, 5.
  • Ocklenburg, S., & Güntürkün, O. (2018). The lateralized brain: The neuroscience and evolution of hemispheric asymmetries. London: Academic Press.
  • O'malley, R. C., & McGrew, W. C. (2006). Hand preferences in captive orangutans (Pongo pygmaeus). Primates; Journal of Primatology, 47(3), 279–283.
  • Papadatou-Pastou, M., Martin, M., Munafò, M. R., & Jones, G. V. (2008). Sex differences in left-handedness: A meta-analysis of 144 studies. Psychological Bulletin, 134(5), 677–699.
  • Papadatou-Pastou, M., & Sáfár, A. (2016). Handedness prevalence in the deaf: Meta-analyses. Neuroscience and Biobehavioral Reviews, 60, 98–114.
  • Papadatou-Pastou, M., & Tomprou, D.-M. (2015). Intelligence and handedness: Meta-analyses of studies on intellectually disabled, typically developing, and gifted individuals. Neuroscience and Biobehavioral Reviews, 56, 151–165.
  • Pike, A. V., & Maitland, D. P. (1997). Paw preferences in cats (Felis silvestris catus) living in a household environment. Behavioural Processes, 39(3), 241–247.
  • Plueckhahn, T. C., Schneider, L. A., & Delfabbro, P. H. (2016). Assessing lateralization in domestic dogs: Performance by Canis familiaris on the Kong test. Journal of Veterinary Behavior: Clinical Applications and Research, 15, 25–30.
  • Popova, E. I. (1974). Effect of use on the elective appearance of an instrumental reaction in dogs. Acta Neurobiologiae Experimentalis, 34(1), 93–97.
  • Poyser, F., Caldwell, C., & Cobb, M. (2006). Dog paw preference shows lability and sex differences. Behavioural Processes, 73(2), 216–221.
  • Preslar, J., Kushner, H. I., Marino, L., & Pearce, B. (2014). Autism, lateralisation, and handedness: A review of the literature and meta-analysis. Laterality, 19(1), 64–95.
  • Prieur, J., Barbu, S., Blois-Heulin, C., & Pika, S. (2017). Captive gorillas’ manual laterality: The impact of gestures, manipulators and interaction specificity. Brain and Language, 175, 130–145.
  • Quaranta, A., Siniscalchi, M., Frate, A., & Vallortigara, G. (2004). Paw preference in dogs: Relations between lateralised behaviour and immunity. Behavioural Brain Research, 153(2), 521–525.
  • Racca, A., Guo, K., Meints, K., & Mills, D. S. (2012). Reading faces: Differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children. PloS One, 7(4), e36076.
  • Raymond, M., & Pontier, D. (2004). Is there geographical variation in human handedness? Laterality, 9(1), 35–51.
  • Reimchen, T. E., & Spoljaric, M. A. (2011). Right paw foraging bias in wild black bear (Ursus americanus kermodei). Laterality, 16(4), 471–478.
  • Reiss, M., & Reiss, G. (1998). Functional asymmetry in cats. Zeitschrift fur Saugetierkunde-International Journal of Mammalian Biology, 63(6), 368–371.
  • Rodriguez, A., Kaakinen, M., Moilanen, I., Taanila, A., McGough, J. J., Loo, S., & Järvelin, M.-R. (2010). Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics, 125(2), e340–e348.
  • Schmitz, J., Metz, G. A. S., Güntürkün, O., & Ocklenburg, S. (2017). Beyond the genome-towards an epigenetic understanding of handedness ontogenesis. Progress in Neurobiology, 159, 69–89.
  • Schneider, L. A., Delfabbro, P. H., & Burns, N. R. (2012). The influence of cerebral lateralisation on the behaviour of the racing greyhound. Applied Animal Behaviour Science, 141(1–2), 57–64.
  • Schneider, L. A., Delfabbro, P. H., & Burns, N. R. (2013). Temperament and lateralization in the domestic dog (Canis familiaris). Journal of Veterinary Behavior: Clinical Applications and Research, 8(3), 124–134.
  • Siniscalchi, M., d'Ingeo, S., Fornelli, S., & Quaranta, A. (2016). Relationship between visuospatial attention and paw preference in dogs. Scientific Reports, 6, 31682.
  • Siniscalchi, M., Lusito, R., Vallortigara, G., & Quaranta, A. (2013). Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs. Current Biology, 23(22), 2279–2282.
  • Siniscalchi, M., Quaranta, A., & Rogers, L. J. (2008). Hemispheric specialization in dogs for processing different acoustic stimuli. PloS One, 3(10), e3349.
  • Siniscalchi, M., Sasso, R., Pepe, A. M., Dimatteo, S., Vallortigara, G., & Quaranta, A. (2011). Sniffing with the right nostril: Lateralization of response to odour stimuli by dogs. Animal Behaviour, 82(2), 399–404.
  • Siniscalchi, M., Sasso, R., Pepe, A. M., Vallortigara, G., & Quaranta, A. (2010). Dogs turn left to emotional stimuli. Behavioural Brain Research, 208(2), 516–521.
  • Ströckens, F., Güntürkün, O., & Ocklenburg, S. (2013). Limb preferences in non-human vertebrates. Laterality, 18(5), 536–575.
  • Tan, U. (1987). Paw preferences in dogs. The International Journal of Neuroscience, 32(3–4), 825–829.
  • Tan, U. (1992). Inverse correlation between right-paw use and body weight in right-pawed male cats and left-pawed female cats. The International Journal of Neuroscience, 67(1–4), 119–123.
  • Tan, U. (1993a). Brain weight is not always directly related to body weight in cats: The roles of right and left cerebral hemispheres, paw preference and sex-related differences. The International Journal of Neuroscience, 70(1–2), 57–63.
  • Tan, U. (1993b). Distribution of paw preference in mongrel and tortoise-shell cats and the relation of hemispheric weight to paw preference: Sexual dimorphism in paw use and its relation to hemispheric weight. The International Journal of Neuroscience, 70(3–4), 199–212.
  • Tan, U., & Calişkan, S. (1987). Asymmetries in the cerebral dimensions and fissures of the dog. The International Journal of Neuroscience, 32(3–4), 943–952.
  • Tan, U., Gepdiremen, A., Kutlu, N., & Cankaya, A. (1992). Parkinsonian-like tremor induced by a combined application of chlorpromazine and pentobarbitone in cats with left-paw preference. The International Journal of Neuroscience, 63(3–4), 157–162.
  • Tan, U., Kara, I., & Kutlu, N. (1991). The effects of testosterone on paw preference in adult cats. The International Journal of Neuroscience, 56(1–4), 187–191.
  • Tan, U., & Kutlu, N. (1991). The distribution of paw preference in right-, left-, and mixed pawed male and female cats: The role of a female right-shift factor in handedness. The International Journal of Neuroscience, 59(4), 219–229.
  • Tan, U., & Kutlu, N. (1992). Asymmetrical relationships between the right and left heights of the Sylvian end points in right- and left-pawed male and female cats: Similarities with planum temporale asymmetries in human brain. The International Journal of Neuroscience, 67(1–4), 81–91.
  • Tan, U., & Kutlu, N. (1993a). The end point of the Sylvian fissure is higher on the right than the left in cat brain as in human brain. The International Journal of Neuroscience, 68(1–2), 11–17.
  • Tan, U., & Kutlu, N. (1993b). The role of right- and left-brain weights in cerebral lateralization of right- and left-pawed male and female cats. The International Journal of Neuroscience, 68(3–4), 185–193.
  • Tan, U., & Kutlu, N. (1993c). The relationships between paw preference and the right- and left-brain weights in male and female adult cats: Ipsilateral and contralateral motor control with regard to asymmetric postural and manipulative actions. The International Journal of Neuroscience, 69(1–4), 21–34.
  • Tan, U., & Kutlu, N. (1993d). Sexual dimorphism in body and brain weight and its association with paw preference in cats. The International Journal of Neuroscience, 73(1–2), 23–36.
  • Tan, U., Yaprak, M., & Kutlu, N. (1990). Paw preference in cats: Distribution and sex differences. The International Journal of Neuroscience, 50(3–4), 195–208.
  • Tomkins, L. M., Thomson, P. C., & McGreevy, P. D. (2010). First-stepping test as a measure of motor laterality in dogs (Canis familiaris). Journal of Veterinary Behavior: Clinical Applications and Research, 5(5), 247–255.
  • Tomkins, L. M., Thomson, P. C., & McGreevy, P. D. (2012). Associations between motor, sensory and structural lateralisation and guide dog success. Veterinary Journal, 192(3), 359–367.
  • Vallortigara, G. (2006). The evolutionary psychology of left and right: Costs and benefits of lateralization. Developmental Psychobiology, 48(6), 418–427.
  • van Alphen, A., Bosse, T., Jonker, C. M., & Koeman, F. (2005). Paw preference correlates to task performance in dogs. Proceedings of the 27th Annual Conference of the Cognitive Science Society, CogSci'05, 27.
  • van Staaveren, N. (2012). Coping strategies, paw preferences and cognition in dogs. Wageningen University.
  • Villablanca, J. R., Hovda, D. A., Jackson, G. F., & Gayek, R. (1993). Neurological and behavioral effects of a unilateral frontal cortical lesions in fetal kittens. I. Brain morphology, movement, posture, and sensorimotor tests. Behavioural Brain Research, 57(1), 63–77.
  • Villablanca, J. R., Marcus, R. J., & Olmstead, C. E. (1976). Effects of caudate nuclei or frontal cortical ablations in cats. I. Neurology and gross behavior. Experimental Neurology, 52(3), 389–420.
  • Webster, W. G. (1981). Morphological asymmetries of the cat brain. Brain, Behavior and Evolution, 18(1–2), 72–79.
  • Wells, D. L. (2003). Lateralised behaviour in the domestic dog, Canis familiaris. Behavioural Processes, 61(1–2), 27–35.
  • Wells, D. L., Hepper, P. G., Milligan, A. D., & Barnard, S. (2016). Comparing lateral bias in dogs and humans using the Kong™ ball test. Applied Animal Behaviour Science, 176, 70–76.
  • Wells, D. L., Hepper, P. G., Milligan, A. D. S., & Barnard, S. (2017). Cognitive bias and paw preference in the domestic dog (Canis familiaris). Journal of Comparative Psychology, 131(4), 317–325.
  • Wells, D. L., Hepper, P. G., Milligan, A. D. S., & Barnard, S. (2018). Stability of motor bias in the domestic dog, Canis familiaris. Behavioural Processes, 149, 1–7.
  • Wells, D. L., & Millsopp, S. (2009). Lateralized behaviour in the domestic cat, Felis silvestris catus. Animal Behaviour, 78(2), 537–541.
  • Wells, D. L., & Millsopp, S. (2012). The ontogenesis of lateralized behavior in the domestic cat, Felis silvestris catus. Journal of Comparative Psychology, 126(1), 23–30.
  • Yetkin, Y. (2002). Physical properties of the cerebral hemispheres and paw preferences in mongrel cats: Sex-related differences. The International Journal of Neuroscience, 112(3), 239–262.
  • Zucca, P., Baciadonna, L., Masci, S., & Mariscoli, M. (2011). Illness as a source of variation of laterality in lions (Panthera leo). Laterality, 16(3), 356–366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.