1,917
Views
35
CrossRef citations to date
0
Altmetric
Research Article

On the impact of nanoparticle doping on the electro-optic response of nematic hosts

Pages 102-115 | Received 06 Nov 2014, Accepted 13 Dec 2014, Published online: 16 Sep 2015

References

  • Qi H, Hegmann T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J Mater Chem. 2006;16:4197–4205.
  • Ouskova E, Buchnev O, Reshetnyak V, et al. Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn 2 P 2 S 6 nanoparticles. Liq Cryst. 2003;30:1235–1239. doi:10.1080/02678290310001601996.
  • Li F, Buchnev O, Cheon CI, et al. Orientational coupling amplification in ferroelectric nematic colloids. Phys Rev Lett. 2006;97:147801/1–4.
  • Yoshida H, Kawamoto K, Kubo H, et al. Nanoparticle-dispersed liquid crystals fabricated by sputter doping. Adv Mater. 2010;22:622–626. doi:10.1002/adma.v22:5.
  • Cho M-J, Park H-G, Jeong H-C, et al. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq Cryst. 2014;41:761–767. doi:10.1080/02678292.2014.889233.
  • Draper M, Saez IM, Cowling SJ, et al. Self-assembly and shape morphology of liquid crystalline gold metamaterials. Adv Funct Mat. 2011;21:1260–1278. doi:10.1002/adfm.201001606.
  • Mang X, Zeng X, Tang B, et al. Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. J Mater Chem. 2012;22:11101–11106.
  • Lewandowski W, Wójcik M, Górecka E. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties. Chem Phys Chem. 2014;15:1283–1295. doi:10.1002/cphc.201301194.
  • Dintinger J, Tang B-J, Zeng X, et al. A self-organized anisotropic liquid-crystal plasmonic metamaterial. Adv Mater. 2013;25:1999–2004. doi:10.1002/adma.201203965.
  • Pratibha R, Park K, Smalyukh II, et al. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Optics Express. 2009;17:19459–19469.
  • Gardner DF, Evans JS, Smalyukh II. Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals. Mol Cryst Liq Cryst. 2011;545:1227–1245. doi:10.1080/15421406.2011.571966.
  • Koenig GM, Meli JM-V, Park J-S, et al. Coupling of the plasmon resonances of chemically functionalized gold nanoparticles to local order in thermotropic liquid crystals. Chem Mater. 2007;19:1053–1061. doi:10.1021/cm062438p.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–319. doi:10.1039/B901793N.
  • Saliba S, Mingotaud C, Kahn ML, et al. Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale. 2013;5:6641–6661.
  • Loudet J-C, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature. 2000;407:611–613. doi:10.1038/35036539.
  • West JL, Glushchenko A, Liao G. Drag on particles in a nematic suspension by a moving nematic-isotropic interface. Phys Rev E. 2002;66:012702–1. doi:10.1103/PhysRevE.66.012702.
  • Voloschenko D, Pishnyak OP, Shiyanovskii SV, et al. Effect of director distortions on morphologies of phase separation in liquid crystals. Phys Rev E. 2002;65:060701–1. doi:10.1103/PhysRevE.65.060701.
  • Lubensky TC, Pettey D, Currier N, et al. Topological defects and interactions in nematic emulsions. Phys Rev E. 1998;57:610–625. doi:10.1103/PhysRevE.57.610.
  • Stark H. Director field configurations around a spherical particle in a nematic liquid crystal. Eur Phys J B. 1999;10:311–321. doi:10.1007/s100510050860.
  • Poulin P, Stark H, Lubensky TC, et al. Novel colloidal interactions in anisotropic fluids. Science. 1997;275:1770–1773. doi:10.1126/science.275.5307.1770.
  • Lapointe C, Hultgren AD, Silevitch ME, et al. Elastic torque and the levitation of metal wires by a nematic liquid crystal. Science. 2004;303:652–655. doi:10.1126/science.1092608.
  • Liao G, Smalyukh II, Kelly JR, et al. Electrorotation of colloidal particles in liquid crystals. Phys Rev E. 2005;72:031704. doi:10.1103/PhysRevE.72.031704.
  • Lapointe C, Mason TG, Smalyukh II. Shape-controlled colloidal interactions in nematic liquid crystals. Science. 2009;326:1083–1086. doi:10.1126/science.1176587.
  • Urbanski M, Piegdon KA, Meier C, et al. Investigations on the director field around microdisc resonators. Liq Cryst. 2011;38:475–482. doi:10.1080/02678292.2011.552742.
  • De Gennes PG. The physics of liquid crystals. Oxford: Oxford University Press; 1974.
  • Kleman M. Points, lines and walls. New York: John Wiley & Sons; 1983.
  • Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater. 2012;24:1461–1465. doi:10.1002/adma.201103791.
  • Milette J, Relaix S, Lavigne C, et al. Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter. 2012;8:6593–6598.
  • Yoshida H, Tanaka Y, Kawamoto K, et al. Nanoparticle-stabilized cholesteric blue phase. Appl Phys Expr. 2009;2:121501.
  • Ravnik M, Alexander GP, Yeomans JM, et al. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc Natl Acad Sci. 2011;108:5188–5192. doi:10.1073/pnas.1015831108.
  • Karatairi E, Rožič B, Kutnjak Z, et al. Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys Rev E. 2010;81:041703. doi:10.1103/PhysRevE.81.041703.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68. doi:10.1038/nmat712.
  • Mirzaei J, Urbanski M, Kitzerow H-S, et al. Synthesis of liquid crystal silane-functionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal. Chem Phys Chem. 2014;15:1381–1394. doi:10.1002/cphc.201301052.
  • Milette J, Toadar V, Reven L, et al. Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction. J Mater Chem. 2011;21:9043.
  • Gorkunov MV, Osipov MA. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter. 2011;7:4348–4356.
  • Gorkunov MV, Shandryuk GA, Shatalova AM, et al. Phase separation effects and the nematic-isotropic transition in polymer and low molecular weight liquid crystals doped with nanoparticles. Soft Matter. 2013;9:3578–3588.
  • Nealon GL, Greget R, Dominguez C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem. 2012;8:349–370. doi:10.3762/bjoc.8.39.
  • Scalia G, Lagerwall JPF, Schymura S, et al. Carbon nanotubes in liquid crystals as versatile functional materials. Phys Stat Sol B. 2007;244:4212–4217. doi:10.1002/(ISSN)1521-3951.
  • Dierking I, Scalia G, Morales P, et al. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv Mater. 2004;16:865–869. doi:10.1002/(ISSN)1521-4095.
  • Ji Y, Huang YY, Terentjev EM. Dissolving and aligning carbon nanotubes in thermotropic liquid crystals. Langmuir. 2011;27:13254–13260. doi:10.1021/la202790a.
  • Kühnast M, Tschierske C, Lagerwall J. Tailor-designed polyphilic promotors for stabilizing dispersions of carbon nanotubes in liquid crystals. Chem Comm. 2010;46:6989–6991.
  • Schymura S, Kühnast M, Lutz V, et al. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv Funct Mater. 2010;20:3350–3357. doi:10.1002/adfm.201000539.
  • Soulé ER, Milette J, Reven L, et al. Phase equilibrium and structure formation in gold nanoparticles-nematic liquid crystal composites: experiments and theory. Soft Matter. 2012;8:2860–2866.
  • Choudhary A, Singh G, Biradar AM. Advances in gold nanoparticle-liquid crystal composites. Nanoscale. 2014;6:7743–7756.
  • Mirzaei J, Reznikov M, Hegmann T. Quantum dots as liquid crystal dopants. J Mater Chem. 2012;22:22350–22365.
  • Liao S-W, Hsieh C-T, Kuo C-C, et al. Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions. Appl Phys Lett. 2012;101:161906.
  • Cook G, Reshetnyak VY, Ziolo RF, et al. Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. Optics Express. 2010;18:17339–17345.
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2890–2898.
  • Qi H, Hegmann T. Liquid crystal–gold nanoparticle composites. Liq Cryst Today. 2011;20:102–114. doi:10.1080/1358314X.2011.610133.
  • Qi H, Hegmann T. Multiple alignment modes for ematic liquid crystals doped with alkylthiol-capped gold nanoparticles. Appl Mater Interf. 2009;1:1731–1738. doi:10.1021/am9002815.
  • Kinkead B, Hegmann T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J Mater Chem. 2010;20:448–458. doi:10.1039/B911641A.
  • Urbanski M, Kinkead B, Hegmann T, et al. Director field of birefringent stripes in liquid crystal/nanoparticle dispersions. Liq Cryst. 2010;37:1151–1156. doi:10.1080/02678292.2010.489160.
  • Mirzaei J, Urbanski M, Yu K, et al. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. J Mater Chem. 2011;21:12710–12716.
  • Bezrodna T, Chashechnikova I, Gavrilko T, et al. Structure formation and its influence on thermodynamic and optical properties of montmorillonite organoclay-5CB liquid crystal nanocomposites. Liq Cryst. 2008;35:265–274. doi:10.1080/02678290701830626.
  • Da Cruz C, Sandre O, Cabuil V. Phase behavior of nanoparticles in a thermotropic liquid crystal. J Phys Chem B. 2005;109:14292–14299. doi:10.1021/jp0455024.
  • Reznikov M, Sharma A, Hegmann T. Ink-jet printed nanoparticle alignment layers: easy design and fabrication of patterned alignment layers for nematic liquid crystals. Part Part Syst Charact. 2014;31:257–265. doi:10.1002/ppsc.201300248.
  • Cseh L, Mehl GH. Structure–property relationships in nematic gold nanoparticles. J Mater Chem. 2007;17:311–315. doi:10.1039/B614046G.
  • Qi H, Kinkead B, Hegmann T. Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv Funct Mater. 2008;18:212–221.
  • Urbanski M, Kinkead B, Qi H, et al. Electroconvection in nematic liquid crystals via nanoparticle doping. Nanoscale. 2010;2:1118–1121.
  • Buka A, Dressel B, Kramer L, et al. Direct transition to electroconvection in a homeotropic nematic liquid crystal. Chaos. 2004;14:793–802.
  • Buka A, Dressel B, Kramer L, et al. Isotropic convection scenarios in an anisotropic fluid. Phys Rev Lett. 2004;93:044502. doi:10.1103/PhysRevLett.93.044502.
  • Buka A, Dressel B, Otowski W, et al. Electroconvection in nematic liquid crystals with positive dielectric and negative conductivity anisotropy. Phys Rev E. 2002;66:051713. doi:10.1103/PhysRevE.66.051713.
  • Urbanski M, Mirzaei J, Hegmann T, et al. Nanoparticle doping in nematic liquid crystals: distinction between surface and bulk effects by numerical simulations. Chem Phys Chem. 2014;15:1395–1404. doi:10.1002/cphc.201301054.
  • Clark MG, Raynes EP, Smith RA, et al. Measurement of the permittivity of nematic liquid crystals in magnetic and electric fields using extrapolation procedures. J Phys D: Appl Phys. 1980;13:2151–2164. doi:10.1088/0022-3727/13/11/025.
  • Wu S-T, Wu C-S. Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals. Phys Rev A. 1990;42:2219–2227. doi:10.1103/PhysRevA.42.2219.
  • Wu S-T, Coates D, Bartmann E. Physical properties of chlorinated liquid crystals. Liq Cryst. 1991;10:635–646. doi:10.1080/02678299108241731.
  • Demus D, Goodby JW, Gray GW, et al. Handbook of liquid crystals. Weinheim: WILEY-VCH; 1998. p. 270–272.
  • Jerome B. Surface effects and anchoring in liquid crystals. Rep Prog Phys. 1991;54:391–451. doi:10.1088/0034-4885/54/3/002.
  • Blinov LM, Chigrinov VG. Electrooptic effects in liquid crystal materials. New York: Springer; 1994.
  • Welford KR, Sambles JR. Analysis of electric field induced deformations in a nematic liquid crystal for any applied field. Liq Cryst. 1987;147:25–42. doi:10.1080/00268948708084622.
  • Deuling HJ. Deformation pattern of twisted nematic liquid crystal layers in an electric field. Mol Cryst Liq Cryst. 1974;27:81–93. doi:10.1080/15421407408083121.
  • Yokoyama H, Van Sprang HA. A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high fields. J Appl Phys. 1985;57:4520–4526.
  • Nastishin YA, Polak RD, Shiyanovskii SV, et al. Nematic polar anchoring strength measured by electric field techniques. J Appl Phys. 1999;86:4199–4213.
  • Kobayashi S, Miyama T, Nishida N, et al. Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response. J Display Technol. 2006;2:121–129. doi:10.1109/JDT.2006.872306.
  • Mirzaei J, Urbanski M, Kitzerow H-S, et al. Hydrophobic gold nanoparticles via silane conjugation: chemically and thermally robust nanoparticles as dopants for nematic liquid crystals. Phil Trans R Soc A. 2013;371:20120256. doi:10.1098/rsta.2012.0256.
  • Jana NR, Earhart C, Ying JY. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater. 2007;19:5074–5082. doi:10.1021/cm071368z.
  • Duran H, Gazdecki B, Yamashita A, et al. Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liq Cryst. 2005;32:815–821. doi:10.1080/02678290500191204.
  • Lopatina LM, Selinger JV. Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys Rev Lett. 2009;102:197802. doi:10.1103/PhysRevLett.102.197802.
  • Khatua S, Manna P, Chang W-S, et al. Plasmonic nanoparticles−liquid crystal composites. J Phys Chem C. 2010;114:7251–7257. doi:10.1021/jp907923v.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.