3,561
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Light responsive liquid crystal soft matters: structures, properties, and applications

&

References

  • Sharma A, Mori T, Lee H-C, et al. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases. ACS Nano. 2014;8:11966–11976.
  • Al-Zangana S, Iliut M, Turner M, et al. Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv Opt Mater. 2016;4:1541–1548.
  • Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.
  • Kim D-Y, Wang L, Cao Y, et al. The biaxial lamello-columnar liquid crystalline structure of a tetrathiafulvalene sanidic molecule. J Mater Chem. 2012;22:16382–16389.
  • Reddy RA, Tschierske C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J Mater Chem. 2006;16:907–961.
  • Kim D-Y, Park M, Lee S-A, et al. Hierarchical superstructures from a star-shaped molecule consisting of a cyclic oligosiloxane with cyanobiphenyl moieties. Soft Matter. 2015;11:58–68.
  • Park S-K, Kim S-E, Kim D-Y, et al. Polymer-stabilized chromonic liquid-crystalline polarizer. Adv Funct Mater. 2011;21:2129–2139.
  • Kim D-Y, Lim S-I, Jung D, et al. Self-assembly and polymer-stabilization of lyotropic liquid crystals in aqueous and non-aqueous solutions. Liq Cryst Rev. 2017;5:34–52.
  • Cano M, Sánchez-Ferrer A, Serrano JL, et al. Supramolecular architectures from bent-core dendritic molecules. Angew Chem Int Ed. 2014;126:13667–13671.
  • Suh J-H, Kim J, Ryu Y-S, et al. Control of surface anchoring properties of liquid crystal by thermo-transfer printing of siloxane oligomers. Liq Cryst. 2015;42:1236–1242.
  • Choi E-J, Cui X, Zin W-C, et al. Anticlinic antiferroelectric smectic liquid crystal formed by an asymmetric banana-shaped molecule. ChemPhysChem. 2007;8:1919–1923.
  • Kang S-W, Sprunt S, Chien L-C. Polymer-stabilized cholesteric diffraction gratings: effects of UV wavelength on polymer morphology and electrooptic properties. Chem Mater. 2006;18:4436–4441.
  • Kim D-Y, Nayek P, Kim S, et al. Suppressed crystallization of rod-disc molecule by surface anchoring confinement. Cryst Growth Des. 2013;13:1309–1315.
  • Shi S, Yokoyama H. Liquid crystal foams generated by pressure-driven microfluidic devices. Langmuir. 2015;31:4429–4434.
  • Liu Q, Yuan Y, Smalyukh II. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles. Nano Lett. 2014;14:4071–4077.
  • Lee SH, Bhattacharyya SS, Jin HS, et al. Devices and materials for high-performance mobile liquid crystal displays. J Mater Chem. 2012;22:11893–11903.
  • Kim D-Y, Lee KM, White TJ, et al. Cholesteric liquid crystal paints: in situ photopolymerization of helicoidally stacked multilayer nanostructures for flexible broadband mirrors. NPG Asia Mater. 2018;10:1061–1068.
  • Kim D-Y, Kang D-G, Shin S, et al. Hierarchical superstructures of norbornene-based polymers depending on dendronized side-chains. Polym Chem. 2016;7:5304–5311.
  • Kim D-Y, Koo J, Lim S-I, et al. Solid-state light emission controlled by tuning the hierarchical superstructure of self-assembled luminogens. Adv Funct Mater. 2018;28:1707075–1707082.
  • Kim D-Y, Lee S-A, Choi Y-J, et al. Thermal- and photo-induced phase-transition behaviors of a tapered dendritic liquid crystal with photochromic azobenzene mesogens and a bicyclic chiral center. Chem Eur J. 2014;20:5689–5695.
  • Kim D-Y, Lee S-A, Park M, et al. Dual photo-functionalized amphiphile for photo-reversible liquid crystal alignments. Chem Eur J. 2015;21:545–548.
  • Bushuyev OS, Friščić T, Barrett CJ. Photo-induced motion of azo dyes in organized media: from single and liquid crystals, to MOFs and machines. CrystEngComm. 2016;18:7204–7211.
  • Ikeda T, Mamiya J-I, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed. 2007;46:506–528.
  • Priimagi A, Shimamura A, Kondo M, et al. Location of the azobenzene moieties within the cross-linked liquid-crystalline polymers can dictate the direction of photoinduced bending. ACS Macro Lett. 2012;1:96–99.
  • Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011;40:4422–4437.
  • Ryabchun A, Li Q, Lancia F, et al. Shape-Persistent Actuators from Hydrazone Photoswitches. J Am Chem Soc. 2019;141:1196–1200.
  • Lubbe AS, Szymanski W, Feringa BL. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem Soc Rev. 2017;46:1052–1079.
  • Li X, Ma S, Hu J, et al. Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia julibrissin leaves. J Mater Chem C. 2019;7:622–629.
  • Kim D-Y, Yoon W-J, Choi Y-J, et al. Photoresponsive chiral molecular crystal for light-directing nanostructures. J Mater Chem C. 2018;6:12314–12320.
  • Choi Y-J, Kim D-Y, Park M, et al. Self-assembled hierarchical superstructures from the benzene-1,3,5-tricarboxamide supramolecules for the fabrication of remote-controllable actuating and rewritable films. ACS Appl Mater Interfaces. 2016;8:9490–9498.
  • Bushuyev OS, Tomberg A, Vinden JR, et al. Azo-phenyl stacking: a persistent self-assembly motif guides the assembly of fluorinated cis-azobenzenes into photo-mechanical needle crystals. Chem Commun. 2016;52:2103–2106.
  • Ahn S-K, Ware TH, Lee KM, et al. Photoinduced Topographical Feature Development in Blueprinted Azobenzene-Functionalized Liquid Crystalline Elastomers. Adv Funct Mater. 2016;26:5819–5826.
  • Garcia-Amorós J, Castro MCR, Coelho P, et al. Fastest non-ionic azo dyes and transfer of their thermal isomerisation kinetics into liquid-crystalline materials. Chem Commun. 2016;52:5132–5135.
  • Kendhale AM, Schenning APHJ, Debije MG. Superior alignment of multi-chromophoric perylenebisimides in nematic liquid crystals and their application in switchable optical waveguides. J Mater Chem A. 2013;1:229–232.
  • Sims MT, Abbott LC, Cowling SJ, et al. Dyes in liquid crystals: experimental and computational studies of a guest-host system based on a combined DFT and MD approach. Chem Eur J. 2015;21:10123–10130.
  • Chen Z, Swager TM. Synthesis and characterization of fluorescent acenequinones as dyes for guest-host liquid crystal displays. Org Lett. 2007;9:997–1000.
  • Kim D-Y, Kang D-G, Lee M-H, et al. A photo-responsive metallomesogen for an optically and electrically tunable polarized light modulator. Chem Commun. 2016;52:12821–12824.
  • Jákli A, Prasad V, Rao DSS, et al. Light-induced changes of optical and electrical properties in bent-core azo compounds. Phys Rev E. 2005;71:021709–021714.
  • Kim D-Y, Nah C, Kang S-W, et al. Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures. ACS Nano. 2016;10:9570–9576.
  • Lee SS, Seo HJ, Kim YH, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals. Adv Mater. 2017;29:1606871–1606894.
  • Lee KM, Tondiglia VP, McConney ME, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics. 2014;1:1033–1041.
  • Zhou K, Bisoyi HK, Jin J-Q, et al. Light-driven reversible transformation between self-organized simple cubic lattice and helical superstructure enabled by a molecular switch functionalized nanocage. Adv Mater. 2018;30:1800237–1800243.
  • Kim D-Y, Lee S-A, Park M, et al. Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties. Soft Matter. 2015;11:2924–2933.
  • Kim D-Y, Lee S-A, Kim H, et al. An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter. Chem Commun. 2015;51:11080–11083.
  • Akiyama H, Yoshida M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv Mater. 2012;24:2353–2356.
  • Uchida E, Sakaki K, Nakamura Y, et al. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene. Chem Eur J. 2003;19:17391–17397.
  • Masutani K, Morikawa M-A, Kimizuka N. A liquid azobenzene derivative as a solvent-free solar thermal fuel. Chem Commun. 2014;50:15803–15806.
  • Kim D-Y, Lee S-A, Jung D, et al. Photochemical isomerization and topochemical polymerization of the programmed asymmetric amphiphiles. Sci Rep. 2016;6:28659–28668.
  • Kim D-Y, Lee S-A, Kim S, et al. Asymmetric fullerene nanosurfactant: interface engineering for automatic molecular alignments. Small. 2018;14:1702439–1702447.
  • Yoon W-J, Choi Y-J, Kang D-G, et al. Construction of polymer-stabilized automatic multidomain vertical molecular alignment layers with pretilt angles by photopolymerizing dendritic monomers under electric fields. ACS Omega. 2017;2:5942–5948.
  • Hahm SG, Lee TJ, Chang T, et al. Unusual alignment of liquid crystals on rubbed films of polyimides with fluorenyl side groups. Macromolecules. 2006;39:5385–5392.
  • Kim D-Y, Kim S, Lee S-A, et al. Asymmetric organic–inorganic hybrid giant molecule: cyanobiphenyl monosubstituted polyhedral oligomeric silsesquioxane nanoparticles for vertical alignment of liquid crystals. J Phys Chem C. 2014;118:6300–6306.
  • He R, Wen P, Kang S-W, et al. Polyimide-free homogeneous photoalignment induced by polymerisable liquid crystal containing cinnamate moiety. Liq Cryst. 2018;45:1342–1352.
  • Kundu S, Lee M-H, Lee SH, et al. In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification. Adv Mater. 2013;25:3365–3370.
  • Kuang Z-Y, Fan Y-J, Tao L, et al. Alignment control of nematic liquid crystal using gold nanoparticles grafted by the liquid crystalline polymer with azobenzene mesogens as the side chains. ACS Appl Mater Interfaces. 2018;10:27269–27277.
  • Zhao D, Zhou W, Cui X, et al. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv Mater. 2011;23:5779–5784.
  • Kim D-Y, Lee S-A, Kang D-G, et al. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device. ACS Appl Mater Interfaces. 2015;7:6195–6204.
  • Uchida J, Yoshio M, Sato S, et al. Self-assembly of giant spherical liquid-crystalline complexes and formation of nanostructured dynamic gels that exhibit self-healing properties. Angew Chem Int Ed. 2017;56:14085–14089.
  • Li J, Geschke D, Stannarius R. Proton NMR investigation of a hydrogen-bonded liquid crystal gel. Liq Cryst. 2004;31:21–29.
  • Kato T, Hirai Y, Nakaso S, et al. Liquid-crystalline physical gels. Chem Soc Rev. 2007;36:1857–1867.
  • Choi Y-J, Yoon W-J, Kim D-Y, et al. Stimuli-responsive liquid crystal physical gels based on the hierarchical superstructures of benzene-1,3,5-tricarboxamide macrogelators. Polym Chem. 2017;8:1888–1894.
  • Weis P, Tian W, Wu S. Photoinduced liquefaction of azobenzene-containing polymers. Chem Eur J. 2018;24:6495–6505.
  • Shankar MR, Smith ML, Tondiglia VP, et al. Contactless, photoinitiated snap-through in azobenzene-functionalized polymers. Proc Natl Acad Sci. 2013;110:18792–18797.
  • Kim D-Y, Lee S-A, Park M, et al. Remote-controllable molecular knob in the mesomorphic helical superstructures. Adv Funct Mater. 2016;26:4242–4251.
  • Kim D-Y, Shin S, Yoon W-J, et al. From smart denpols to remote-controllable actuators: hierarchical superstructures of azobenzene-based polynorbornenes. Adv Funct Mater. 2017;27:1606294–1606301.
  • Klimusheva G, Mirnaya T, Barbovskiy Y. Versatile nonlinear-optical materials based on mesomorphic metal alkanoates: design, properties, and applications. Liq Cryst Rev. 2015;3:28–57.
  • Zhou P, Li Y, Liu S, et al. Holographic display and storage based on photo-responsive liquid crystals. Liq Cryst Rev. 2016;4:83–100.
  • Liu D, Broer DJ. Liquid crystal polymer networks: switchable surface topographies. Liq Cryst Rev. 2013;1:20–28.
  • Ula SW, Traugutt NA, Volpe RH, et al. Liquid crystal elastomers: an introduction and review of emerging technologies. Liq Cryst Rev. 2018;6:78–107.
  • Ayer MA, Simon YC, Weder C. Azo-containing polymers with degradation on-demand feature. Macromolecules. 2016;49:2917–2927.
  • Ni B, Xie H-L, Tang J, et al. A self-healing photoinduced-deformable material fabricated by liquid crystalline elastomers using multivalent hydrogen bonds as cross-linkers. Chem Commun. 2016;52:10257–10260.
  • Zhou H, Xue C, Weis P, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem. 2017;9:145–151.
  • Weis P, Wang D, Wu S. Visible-light-responsive azopolymers with inhibited π–π stacking enable fully reversible photopatterning. Macromolecules. 2016;49:6368–6373.
  • Qian H, Pramanik S, Aprahamian I. Photochromic hydrazone switches with extremely long thermal half-lives. J Am Chem Soc. 2017;139:9140–9143.
  • Kim D-Y, Lee S-A, Choi HJ, et al. Reversible actuating and writing behaviours of a head-to-side connected main-chain photochromic liquid crystalline polymer. J Mater Chem C. 2013;1:1375–1382.