586
Views
25
CrossRef citations to date
0
Altmetric
Articles

A comparative study on crashworthiness of thin-walled tubes with functionally graded thickness under oblique impact loadings

, &
Pages 453-471 | Received 21 Feb 2018, Accepted 04 May 2018, Published online: 01 Feb 2019

References

  • Marzbanrad J, Ebrahimi MR. Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin Wall Struct. 2011;49:1605–1615.
  • Meran AP, Baykasoglu C, Mugan A, et al. Development of crash energy management design for a railway passenger car. Proc Inst Mech Eng. Part F: J Rail Rap Transit. 2016;230:206–219.
  • Alghamdi AAA. Collapsible impact energy absorbers: an overview. Thin Wall Struct. 2001;39:189–213.
  • Abramowicz W. Thin-walled structures as impact energy absorbers. Thin Wall Struct. 2003;41:91–107.
  • Olabi AGÃ, Morris E, Hashmi MSJ. Metallic tube type energy absorbers: a synopsis. Thin Wall Struct. 2007;45:706–726.
  • Yuen SCK, Nurick GN. The energy-absorbing characteristics of tubular structures with geometric and material modifications: an overview. App Mech Rev. 2008;61:20802.
  • Mat O, İsmail F, Yacoob KA, Inayatullah S. Impact response of thin-walled tubes: a prospective review. App Mech Mater. 2012;165:130–134.
  • Yamashita M, Gotoh M, Sawairi Y. Axial crush of hollow cylindrical structures with various polygonal cross-sections: Numerical simulation and experiment. J Mater Process Technol. 2003;140:59–64.
  • Rossi A, Fawaz Z, Behdinan K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes. Thin Wall Struct. 2005;43:1646–1661.
  • Zhang X, Huh H. Crushing analysis of polygonal columns and angle elements. Int J Impact Eng. 2010;37:441–451.
  • Nia AA, Hamedani JH. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin Wall Struct. 2010;48:946–954.
  • Guler MA, Cerit ME, Bayram B, et al. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. Int J Crashworth. 2010;15(4):377–390.
  • Fan Z, Lu G, Liu K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng Struct. 2013;55:80–89.
  • Alavi Nia A, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin Wall Struct. 2014;74:155–165.
  • Ali M, Ohioma E, Kraft F, et al. Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes. Thin Wall Struct. 2015;94:253–272.
  • Reyes A, Langseth M, Hopperstad OS. Crashworthiness of aluminum extrusions subjected to oblique loading: Experiments and numerical analyses. Int J Mech Sci. 2002;44:1965–1984.
  • Hosseini-Tehrani P, Pirmohammad S. Collapse study of thin-walled polygonal section columns subjected to oblique loads. Proc Inst Mech Part D: J Automob Eng. 2007;221:801–810.
  • Han DC, Park SH. Collapse behavior of square thin-walled columns subjected to oblique loads. Thin Wall Struct. 1999;35:167–184.
  • Gao Q, Wang L, Wang Y, et al. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading. Thin Wall Struct. 2016;100:105–112.
  • Zarei H. Experimental and numerical investigation of crash structures using aluminum alloys. Cuvillier Verlag, Göttingen; 2008.
  • Li G, Xu F, Sun G, et al. A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading. Int J Impact Eng. 2015;77:68–83.
  • Elgalai AM, Mahdi E, Hamouda AMS, et al. Crushing response of composite corrugated tubes to quasi-static axial loading. Compos Struct. 2004;66:665–671.
  • Hou S, Han X, Sun G, et al. Multiobjective optimization for tapered circular tubes. Thin Wall Struct. 2011;49:855–863.
  • Qi C, Yang S. Crashworthiness and lightweight optimisation of thin-walled conical tubes subjectedto an oblique impact. Int J Crashworthines. 2014;19:334–351.
  • Li G, Xu F, Sun G, et al. Crashworthiness study on functionally graded thin-walled structures. Int J Crashworthines. 2015;20:280–300.
  • Nagel GM, Thambiratnam DP. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading. Int J Impact Eng. 2006;32:1595–1620.
  • Sun G, Xu F, Li G, et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int J Impact Eng. 2014;64:62–74.
  • Li G, Zhang Z, Sun G, et al. Comparison of functionally-graded structures under multiple loading angles. Thin Wall Struct. 2015;94:334–347.
  • Baykasoglu C, Cetin MT. Energy absorption of circular aluminium tubes with functionally graded thickness under axial impact loading. Int J Crashworthines. 2015;20:95–106.
  • Xu F, Sun G, Li G, et al. Crashworthiness design of multi-components tailor-welded blank (TWB) structures. Struct Multidiscip Optim. 2013;48:653–657.
  • Gedikli H. Numerical investigation of axial crushing behavior of a tailor welded tube. Material Design. 2013;44:587–595.
  • Zhu P, Shi Y L, Zhang KZ, et al. Optimum design of an automotive inner door panel with a tailor-welded blank structure. Proc Inst Mech Eng. Part D: J Automob Eng. 2008;222(8):1337–1348.
  • Duan L, Sun G, Cui J, et al. Crashworthiness design of vehicle structure with tailor rolled blank. Struct Multidiscip Optim. 2016;53(2):321–338.
  • Meyer A, Wietbrock B, Hirt G. Increasing of the drawing depth using tailor rolled blanks-numerical and experimental analysis. Int J Mach Tool Manufact. 2008;48:522–531.
  • Yang RJ, Fu Y, Li G. Application of tailor rolled blank in vehicle front end for frontal impact. SAE World Congress, Detroit, MI. April 16_19, 2007 (Technical Papers 2007-01-0675).
  • Jandaghi Shahi V, Marzbanrad J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes. Thin Wall Struct. 2012;60:24–37.
  • Li G, Zhang Z, Sun G, et al. Crushing analysis and multiobjective optimization for functionally graded foam-filled tubes under multiple load cases. Int J Mech Sci. 2014;89:439–452.
  • Xu F. Enhancing material efficiency of energy absorbers through graded thickness structures. Thin Wall Struct. 2015;97:250–265.
  • Xu F, Tian X, Li G. Experimental study on crashworthiness of functionally graded thickness. Thin Wall Tub Struct. 2015;55(7):1339–1352.
  • Zhang Y, Lu M, Sun G, et al. On functionally graded composite structures for crashworthiness. Compos Struct. 2015;132:393–405.
  • Pang T, Kang H, Yan X, et al. Crashworthiness design of functionally graded structures with variable diameters. Int J Crashworthines. 2016;8265:1–15.
  • Fang J, Gao Y, An X, et al. Design of transversely-graded foam and wall thickness structures for crashworthiness criteria. Compos. Part B: Eng. 2016;92:338–349.
  • Chen Y, Bai Z, Zhang L, et al. Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles. Thin Wall Struct. 2017;110:133–139.
  • Erdin ME, Baykasoglu C, Cetin MT. Quasi-static axial crushing behavior of thin-walled circular aluminum tubes with functionally graded thickness. Procedia Eng. 2016;149:559–565.
  • Baykasoglu A, Baykasoglu C. Crashworthiness optimization of circular tubes with functionally-graded thickness. Eng Comput. 2016;33(5):1560–1585.
  • Baykasoglu A, Baykasoglu C. Multiple objective crashworthiness optimization of circular tubes with functionally graded thickness via artificial neural networks and genetic algorithms. Proc Inst Mech Eng. Part C: J Mech Eng Sci. 2017;231:2005–2016.
  • Sun G, Li G, Hou S, et al. Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci Eng A. 2010;527:1911–1919.
  • Karagiozova D, Nurick GN, Chung Kim Yuen S. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load. Thin Wall Struct. 2005;43:956–982.D.
  • Dassault Systems Inc. Abaqus User’s Manual Ver. 6.17. Lowell, MA: Dausault Systems Inc.; 2014. Available from: www.simulia.com
  • Karagiozova M. Alves. Dynamic elastic-plastic buckling of structural elements: a review. App Mech Rev. 2008;61:1–26.
  • Zarei HR, Kröger M. Multiobjective crashworthiness optimization of circular aluminum tubes. Thin Wall Struct. 2006;44:301–308.
  • Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. Int J Impact Eng. 1984;2:263–281.
  • Al Galib D, Limam A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin Wall Struct. 2004;42:1103–1137.
  • Shakeri M, Mirzaeifar R, Salehghaffari S. New insights into the collapsing of cylindrical thin-walled tubes under axial impact load. Proc Inst Mech Eng. Part C 2007;221:1–17.
  • Guillow SR, Lu G, Grzebieta RH. Quasi-static axial compression of thin-walled circular aluminum tubes. Int J Mech Sci. 2001;43:2103–2123.
  • Abramowicz W, Wierzbicki T. Axial crushing of multi corner sheet metal columns. J App Mech—ASME. 1989;56:113–120.
  • Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled structures. J App Mech—ASME 1983;50 :727–734.
  • Zhang X, Zhang H. Experimental and numerical investigation on crush resistance of polygonal columns and angle elements. Thin Wall Struct. 2012;57:25–36.
  • Xu F, Tian X, Li G. Experimental study on crashworthiness of functionally graded thickness thin-walled tubular structures. Exp Mech. 2015;55:1339–1352.
  • Koza JR. Genetic programming on the programming of computers by means of natural selection. Cambridge (MA): The MIT Press; 1992.
  • Qureshi OM, Bertocchi E, Qaiser Z, et al. Frequency embedded box beam crash absorbers under oblique impacts. Thin Wall Struct. 2014;75:1–7.
  • Searson DP. GPTIPS 2: an open source software platform for symbolic data mining. New York (NY): Springer; 2015.
  • Searson DP, Leahy DE, Willis MJ. GPTIPS : an open source genetic programming toolbox for multigene symbolic regression. Int. Multi Conf. Eng. Comput. Sci. 2010;1:77–80, Hong Kong: IMECS.
  • Bayazidi AM, Wang G, Bolandi H, et al. Multigene genetic programming for estimation of elastic modulus of concrete. Math Prob Eng. 2014;2014:1–10.
  • Kleijnen JPC. Experimental design for sensitivity analysis. New York (NY): Optimization and Validation of Simulation Models; 1998.
  • Baykasoglu A, Gullu H, Canakcı H, et al. Prediction of compressive and tensile strength of limestone via genetic programming. Ener Syst Appl. 2008;35:111–123.
  • Baykasoglu A, Öztas A, Özbay E. Expert systems with applications prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches. Expert Syst Appl. 2009;36:6145–6155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.