405
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Energy absorption investigation of octagonal multi-layered origami thin-walled tubes under quasi-static axial loading

, ORCID Icon &
Pages 511-522 | Received 03 Dec 2021, Accepted 31 Jul 2022, Published online: 09 Aug 2022

References

  • Abramowicz W. Thin-walled structures as impact energy absorbers. Thin-Walled Struct. 2003;41(2–3):91–107.
  • Tyrell D, Jacobsen K, Martinez E, et al. Train-to-Train impact test of crash energy management passenger rail equipment: Structural results. presented at the ASME 2006 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, 2006.
  • Costas M, Díaz J, Romera LE, et al. Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers. Int J Impact Eng. 2013;62:166–181.
  • Sun H, Wang J, Shen G, et al. Energy absorption of aluminum alloy thin-walled tubes under axial impact. J Mech Sci Technol. 2016;30(7):3105–3111.
  • Baroutaji A, Sajjia M, Olabi A-G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Struct. 2017;118:137–163.
  • Partovi A, Shahzamanian MM, Wu PD. Numerical study of mechanical behaviour of tubular structures under dynamic compression. J Mech Sci Technol. 2021;35(3):1129–1142.
  • Zhou C, Jiang L, Tian K, et al. Origami crash boxes subjected to dynamic oblique loading. Trans ASME, J Appl Mech. 2017;84(9):091006.
  • Isaac CW, Oluwole O. Energy absorption improvement of circular tubes with externally press-fitted ring around tube surface subjected under axial and oblique impact loading. Thin-Walled Struct. 2016;109:352–366.
  • Ma JY, You Z. Energy absorption of thin-walled beams with a pre-folded origami pattern. AMM. 2014;566:569–574.
  • Tarlochan F, Samer F, Hamouda AMS, et al. Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Struct. 2013;71:7–17.
  • Alavi Nia A, Khodabakhsh H. The effect of radial distance of concentric thin-walled tubes on their energy absorption capability under axial dynamic and quasi-static loading. Thin-Walled Struct. 2015;93:188–197.
  • Singace AA. Axial crushing analysis of tubes deforming in the multi-lobe mode. Int J Mech Sci. 1999;41(7):865–890.
  • Karagiozova D. Dynamic buckling of elastic–plastic square tubes under axial impact—I: stress wave propagation phenomenon. Int J Impact Eng. 2004;30(2):143–166.
  • Murase K, Wada H. Numerical study on the transition of plastic buckling modes for circular tubes subjected to an axial impact load. Int J Impact Eng. 2004;30(8–9):1131–1146.
  • Zhang XW, Tian QD, Yu TX. Axial crushing of circular tubes with buckling initiators. Thin-Walled Struct. 2009;47(6–7):788–797.
  • Singh PK, Das A, Sivaprasad S, et al. Energy absorption behaviour of different grades of steel sheets using a strain rate dependent constitutive model. Thin-Walled Struct. 2017;111:9–18.
  • Song Z, Ming S, Li T, et al. Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer. Int J Mech Sci. 2021;189:105994.
  • Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled structures. Trans ASME, J Appl Mech. 1983;50(4a):727–734.
  • Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. Int J Impact Eng. 1984;2(3):263–281.
  • Ma J, You Z. Energy absorption of thin-walled square tubes with a prefolded origami pattern—part i: Geometry and numerical simulation. Trans ASME, J Appl Mech. 2014;81(1):011003.
  • Allan T. Experimental and analytical investigation of the behaviour of cylindrical tubes subject to axial compressive forces. J Mech Eng Sci. 1968;10(2):182–197.
  • Karagiozova D, Alves M. l Transition from progressive buckling to global bending of circular shells under axial impact––part I: Experimental and numerical observations. Int J Solids Struct. 2004;41(5-6):1565–1580.
  • Zhang XW, Yu TX. Energy absorption of pressurized thin-walled circular tubes under axial crushing. Int J Mech Sci. 2009;51(5):335–349.
  • Zhang X, Wen Z, Zhang H. Axial crushing and optimal design of square tubes with graded thickness. Thin-Walled Struct. 2014;84:263–274.
  • Lin Y, Min J, Li Y, et al. A thin-walled structure with tailored properties for axial crushing. Int J Mech Sci. 2019;157–158:119–135.
  • Liu W, Lian J, Münstermann S, et al. Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing. Int J Mech Sci. 2020;176:105534.
  • Alexander JM. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q J Mech Appl Math. 1960;13(1):10–15.
  • Andrews KRF, England GL, Ghani E. Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci. 1983;25(9–10):687–696.
  • Wierzbicki T, Bhat SU, Abramowicz W, et al. Alexander revisited—a two folding elements model of progressive crushing of tubes. Int J Solids Struct. 1992;29(24):3269–3288.
  • Guillow SR, Lu G, Grzebieta RH. Quasi-static axial compression of thin-walled circular aluminium tubes. Int J Mech Sci. 2001;43(9):2103–2123.
  • Meng Q, Al-Hassani STS, Soden PD. Axial crushing of square tubes. Int J Mech Sci. 1983;25(9–10):747–773.
  • Abramowicz W, Jones N. Dynamic axial crushing of square tubes. Int J Impact Eng. 1984;2(2):179–208.
  • Mamalis AG, Manolakos DE, Baldoukas AK, et al. Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders. Thin-Walled Struct. 1991;12(1):17–34.
  • Mamalis AG, Manolakos DE, Ioannidis MB, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section. Thin-Walled Struct. 2003;41(10):891–900.
  • Rossi A, Fawaz Z, Behdinan K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes. Thin-Walled Struct. 2005;43(10):1646–1661.
  • Zhang X, Zhang H. Experimental and numerical investigation on crush resistance of polygonal columns and angle elements. Thin-Walled Struct. 2012;57:25–36.
  • Fan Z, Lu G, Liu K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng Struct. 2013;55:80–89.
  • Yang K, Xu S, Zhou S, et al. Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin-Walled Struct. 2018;123:100–113.
  • Ming S, Zhou C, Li T, et al. Energy absorption of thin-walled square tubes designed by kirigami approach. Int J Mech Sci. 2019;157–158:150–164.
  • Lee S, Hahn C, Rhee M, et al. Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes. Mater Design. 1999;20(1):31–40.
  • Adachi T, Tomiyama A, Araki W, et al. Energy absorption of a thin-walled cylinder with ribs subjected to axial impact. Int J Impact Eng. 2008;35(2):65–79.
  • Daneshi GH, Hosseinipour SJ. Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression. Mater Design. 2002;23(7):611–617.
  • Hosseinipour SJ, Daneshi GH. Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression. Thin-Walled Struct. 2003;41(1):31–46.
  • Zhang XW, Su H, Yu TX. Energy absorption of an axially crushed square tube with a buckling initiator. Int J Impact Eng. 2009;36(3):402–417.
  • Alavi Nia A, Fallah Nejad K, Badnava H, et al. Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading. Thin-Walled Struct. 2012;59:87–96.
  • Szwedowicz D, Estrada Q, Cortes C, et al. Evaluation of energy absorption performance of steel square profiles with circular discontinuities. Lat Am J Solids Struct. 2014;11(10):1744–1760.
  • Wu S, Li G, Sun G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube. Thin-Walled Struct. 2016;105:121–134.
  • Zhou C, Ming S, Xia C, et al. The energy absorption of rectangular and slotted windowed tubes under axial crushing. Int J Mech Sci. 2018;141:89–100.
  • Tian K, Zhang Y, Yang F, et al. Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths. Int J Mech Sci. 2020;166:105239.
  • Hui D. Design of beneficial geometric imperfections for elastic collapse of thin-walled box columns. Int J Mech Sci. 1986;28(3):163–172.
  • Seffen K, Stott SV. Surface texturing through cylinder buckling. Trans ASME, J Appl Mech. 2014;81(6):061001.
  • Zhou C, Wang B, Ma J, et al. Dynamic axial crushing of origami crash boxes. Int J Mech Sci. 2016;118:1–12.
  • Wang B, Zhou C. The imperfection-sensitivity of origami crash boxes. Int J Mech Sci. 2017;121:58–66.
  • Zhou C, Wang B, Luo H, et al. Quasi-static axial compression of origami crash boxes. Int J Appl Mech. 2017;09(05):1750066.
  • Lee T-U, Yang X, Ma J, et al. Elastic buckling shape control of thin-walled cylinder using pre-embedded curved-crease origami patterns. Int J Mech Sci. 2019;151:322–330.
  • Song J, Chen Y, Lu G. Axial crushing of thin-walled structures with origami patterns. Thin-Walled Struct. 2012;54:65–71.
  • Zhou C, Zhou Y, Wang B. Crashworthiness design for trapezoid origami crash boxes. Thin-Walled Struct. 2017;117:257–267.
  • Yang K, Xu S, Shen J, et al. Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification. Thin-Walled Struct. 2016;103:33–44.
  • Ma J, Hou D, Chen Y, et al. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin-Walled Struct. 2016;100:38–47.
  • Ma J, Dai H, Shi M, et al. Quasi-static axial crushing of hexagonal origami crash boxes as energy absorption devices. Mech. Sci. 2019;10(1):133–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.