125
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Damage mechanisms and analytical model of CFRP laminate under low-velocity normal and oblique impacts

ORCID Icon, , , , & ORCID Icon
Pages 430-444 | Received 08 Mar 2022, Accepted 10 Sep 2023, Published online: 21 Sep 2023

References

  • Abrate S. Impact on laminated composite materials. Appl Mech Rev. 1991;44:155–190.
  • Vaidya UK. Impact response of laminated and sandwich composites. In: Impact engineering of composite structures. Vienna: Springer; 2011. pp. 97–191.
  • Richardson MOW, Wisheart MJ. Review of low-velocity impact properties of composite materials. Compos A Appl Sci Manuf. 1996;27(12):1123–1131. doi: 10.1016/1359-835X(96)00074-7.
  • Quaresimin M, Ricotta M, Martello L, et al. Energy absorption in composite laminates under impact loading. Compos B Eng. 2013;44(1):133–140. doi: 10.1016/j.compositesb.2012.06.020.
  • Zhang J, Li Z, Sang T, et al. Structure design of LFT passenger car seat structure based on topology optimisation. Int J Crashworthiness. 2021;26(6):617–627. doi: 10.1080/13588265.2020.1766399.
  • Akahoshi Y, Nakamura R, Tanaka M. Development of bumper shield using low density materials. Int J Impact Eng. 2001;26(1–10):13–19. doi: 10.1016/S0734-743X(01)00069-0.
  • Zhang J, Chen J, Li Z, et al. Optimisation design of CFRP passenger car seat backplane based on impact characteristics. Int J Crashworthiness. 2021;26(4):355–367. doi: 10.1080/13588265.2020.1717919.
  • Zhang J, Jiang Z, Li Z, et al. Optimization design of vehicle CFRP B-pillar stiffening panel for crashworthiness. 2018;40(10):1166–1171.
  • Kullgren A, Lie A, Tingvall C. Comparison between euro NCAP test results and real-world crash data. Traffic Inj Prev. 2010;11(6):587–593. doi: 10.1080/15389588.2010.508804.
  • Sjoblom PO, Hartness JT, Cordell TM. On low-velocity impact testing of composite materials. J Compos Mater. 1988;22(1):30–52. doi: 10.1177/002199838802200103.
  • Bogenfeld R, Kreikemeier J, Wille T. Review and benchmark study on the analysis of low-velocity impact on composite laminates. Eng Fail Anal. 2018;86:72–99. doi: 10.1016/j.engfailanal.2017.12.019.
  • Caprino G, Lopresto V. On the penetration energy for fibre-reinforced plastics under low-velocity impact conditions. Compos Sci Technol. 2001;61(1):65–73. doi: 10.1016/S0266-3538(00)00152-4.
  • Caprino G, Lopresto V. The significance of indentation in the inspection of carbon fibre-reinforced plastic panels damaged by low-velocity impact. Compos Sci Technol. 2000;60(7):1003–1012. doi: 10.1016/S0266-3538(99)00196-7.
  • Belingardi G, Vadori R. Influence of the laminate thickness in low velocity impact behavior of composite material plate. Compos Struct. 2003;61(1-2):27–38. doi: 10.1016/S0263-8223(03)00027-8.
  • Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, et al. Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Compos Struct. 2015;133:1116–1126. doi: 10.1016/j.compstruct.2015.08.028.
  • Zhang Q, Zhang J, Wu L. Impact and energy absorption of long fiber-reinforced thermoplastic based on two-phase modeling and experiments. Int J Impact Eng. 2018;122:374–383. doi: 10.1016/j.ijimpeng.2018.09.003.
  • Zhang J, Li Z, Zhang Q, et al. Long fibre-reinforced thermoplastic theoretical model for energy absorption analysis based on impact performance. Int J Crashworthiness. 2022;27(3):816–825. doi: 10.1080/13588265.2020.1857199.
  • Singh H, Mahajan P. Analytical modeling of low velocity large mass impact on composite plate including damage evolution. Compos Struct. 2016;149:79–92. doi: 10.1016/j.compstruct.2016.04.009.
  • Yuan Y, Xu C, Xu T, et al. An analytical model for deformation and damage of rectangular laminated glass under low-velocity impact. Compos Struct. 2017;176:833–843. doi: 10.1016/j.compstruct.2017.06.029.
  • Raponi E, Sergi C, Boria S, et al. Temperature effect on impact response of flax/epoxy laminates: analytical, numerical and experimental results. Compos Struct. 2021;274:114316. doi: 10.1016/j.compstruct.2021.114316.
  • Zhu Y, Sun Y. Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration. Int J Impact Eng. 2020;139:103508. doi: 10.1016/j.ijimpeng.2020.103508.
  • García-Castillo SK, Sánchez-Sáez S, Santiuste C, et al. Perforation of composite laminate subjected to dynamic loads. In Serge Abrate, Bruno Castanié, Yapa D. S. Rajapakse (Eds) Dynamic failure of composite and sandwich structures. Dordrecht: Springer; 2013. pp. 291–337.
  • Key CT, Alexander CS. Numerical and experimental evaluations of a glass-epoxy composite material under high velocity oblique impacts. Int J Impact Eng. 2020;137:103443. doi: 10.1016/j.ijimpeng.2019.103443.
  • Yang B, He L, Gao Y. Simulation on impact response of FMLs: effect of fiber stacking sequence, thickness, and incident angle. Sci Eng Compos Mater. 2018;25(3):621–631. doi: 10.1515/secm-2016-0226.
  • Xie W, Zhang W, Kuang N, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere. Compos B Eng. 2016;99:483–493. doi: 10.1016/j.compositesb.2016.06.020.
  • Salim Y, Yahya MY, Israr HA, et al. Oblique impact behavior of unidirectional natural fiber reinforced composites. Int J Adv Appl Sci. 2018;5(2):161–164. doi: 10.21833/ijaas.2018.02.023.
  • Song Z, Luong S, Whisler D, et al. Honeycomb core failure mechanism of CFRP/nomex sandwich panel under multi-angle impact of hail ice. Int J Impact Eng. 2021;150:103817. doi: 10.1016/j.ijimpeng.2021.103817.
  • Liu PF, Liao BB, Jia LY, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Compos Struct. 2016;149:408–422. doi: 10.1016/j.compstruct.2016.04.012.
  • Withers PJ, Stobbs WM, Pedersen OB. The application of the eshelby method of internal stress determination to short fibre metal matrix composites. Acta Metall. 1989;37(11):3061–3084. doi: 10.1016/0001-6160(89)90341-6.
  • Mortazavi B, Baniassadi M, Bardon J, et al. Modeling of two-phase random composite materials by finite element, mori–tanaka and strong contrast methods. Compos B Eng. 2013;45(1):1117–1125. doi: 10.1016/j.compositesb.2012.05.015.
  • Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech. 1980;47(2):329–334. doi: 10.1115/1.3153664.
  • Chaboche JL. Continuous damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des. 1981;64(2):233–247. doi: 10.1016/0029-5493(81)90007-8.
  • Lapczyk I, Hurtado JA. Progressive damage modeling in fiber-reinforced materials. Compos A Appl Sci Manuf. 2007;38(11):2333–2341. doi: 10.1016/j.compositesa.2007.01.017.
  • Long S, Yao X, Zhang X. Delamination prediction in composite laminates under low-velocity impact. Compos Struct. 2015;132:290–298. doi: 10.1016/j.compstruct.2015.05.037.
  • Mall S, Yun KT, Kochhar NK. Characterization of matrix toughness effect on cyclic delamination growth in graphite fiber composites. In P. Lagace (Ed) Composite materials: fatigue and fracture., Vol. 2. ASTM International; 1989.
  • Mall S. Influence of resin on delamination and debonding mechanisms of composite materials under fatigue loading. KEM. 1991;37:209–224. doi: 10.4028/www.scientific.net/KEM.37.209.
  • Isometsii J, Lahtinen H. Criteria for matrix failure in continuous frp-composites-a literature study. PART 1: matrix cracking. Raken Mek. 1996;29:29–50.
  • Naik NK, Shrirao P, Reddy BCK. Ballistic impact behaviour of woven fabric composites: parametric studies. Mater Sci Eng A. 2005;412(1–2):104–116. doi: 10.1016/j.msea.2005.08.019.
  • Benzeggagh ML, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol. 1996;56(4):439–449. doi: 10.1016/0266-3538(96)00005-X.
  • Wang HR, Long SC, Zhang XQ, et al. Study on the delamination behavior of thick composite laminates under low-energy impact. Compos Struct. 2018;184:461–473. doi: 10.1016/j.compstruct.2017.09.083.
  • Zhang J, Li Z, Zhang Q, et al. Study of fiber modulus effect on impact energy absorption characteristics of composite laminates at normal and oblique impacts. Mater Res Express. 2019;6(8):085610. doi: 10.1088/2053-1591/ab1ad4.
  • Babaei H, Mostofi TM, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin Walled Struct. 2016;107:257–265. doi: 10.1016/j.tws.2016.06.013.
  • Timoshenko SP, Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill; 1959.
  • Naik NK. Analysis of woven fabric composites for ballistic protection. In: Chen X, editor. Advanced fibrous composite materials for ballistic protection. England: Woodhead Publishing; 2016. pp. 217–262.
  • Claus J, Santos RAM, Gorbatikh L, et al. Effect of matrix and fibre type on the impact resistance of woven composites. Compos B Eng. 2020;183:107736. doi: 10.1016/j.compositesb.2019.107736.
  • Choi HY, Wu HYT, Chang FK. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: part II—analysis. J Compos Mater. 1991;25(8):1012–1038. doi: 10.1177/002199839102500804.
  • Jih CJ, Sun CT. Prediction of delamination in composite laminates subjected to low velocity impact. J Compos Mater. 1993;27(7):684–701. doi: 10.1177/002199839302700703.
  • Amaro AM, Reis PNB, de Moura M, et al. Influence of open holes on composites delamination induced by low velocity impact loads. Compos Struct. 2013;97:239–244. doi: 10.1016/j.compstruct.2012.09.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.