112
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Application of Macro Element Method (MEM) for faster automotive crash safety design during concept stage

, , &
Pages 533-546 | Received 01 Aug 2022, Accepted 10 Sep 2023, Published online: 21 Sep 2023

References

  • Peddi SN. Selection of optimal design parameters to achieve improved occupant performance in frontal impacts. SAE International; SAE Technical Paper, 2013, Detroit, USA. 2013. doi: 10.4271/2013-01-0756.
  • Song L, Pabst M, Duddeck F, et al. A simplified model for barrier-vehicle interaction in a rear crash for early phase development and solution spaces. Int J Crashworthiness. 2018;23(5):507–520. doi: 10.1080/13588265.2017.1350091.
  • Georgiou G, Zeguer T. On the assessment of the macro-element methodology for full vehicle crashworthiness analysis. Int J Crashworthiness. 2018;23(3):336–353. doi: 10.1080/13588265.2017.1328723.
  • Kamal MM. Analysis and simulation of vehicle to barrier impact. SAE Paper 700414; 1970.
  • Mahmood H, Paluezny A. Analytical technique for simulating crash response of vehicle structures composed of beam elements. SAE Paper 860820; 1986.
  • Liu Y, Day ML. Simplified modeling of cross members in vehicle design. SAE Trans. 2007;116(Section 6):1570–1578.
  • Hamza K, Saitou K. Design optimization of vehicle structures for crashworthiness using equivalent mechanism approximations. J Mech Des. 2005;127(3):485–492. doi: 10.1115/1.1862680.
  • Alexander JM. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q J Mech Appl Math. 1960;13(1):10–15. doi: 10.1093/qjmam/13.1.10.
  • Abramowicz W. The effective crushing distance in axially compressed thin-walled metal columns. Int J Impact Eng. 1983;1(3):309–317. doi: 10.1016/0734-743X(83)90025-8.
  • Abramowicz W. Macro element method in crashworthiness of vehicles. In: Ambrosio J, editor. Crashworthiness – energy management and occupant protection. Wien; New York (NY): Springer; 2001.
  • Impact Design. Visual crash studio (VCS) user’s manual; 2006.
  • Hughes K, Ramos J, Vignjevic R, et al. MEM vs. FEM: practical crashworthiness insights for macro element modelling applied to sub-assembly and full vehicle automotive structures. Int J Crashworthiness. 2022;27(6):1708–1725. doi: 10.1080/13588265.2021.2008191.
  • Carvalho M, Ambrosio J, Eberhard P. Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure. Struct Multidisc Optim. 2011;44(1):85–97. doi: 10.1007/s00158-010-0590-y.
  • Noorsumar G, Rogovchenko S, Robbersmyr KG, et al. Mathematical models for assessment of vehicle crashworthiness: a review. Int J Crashworthiness. 2022;27(5):1545–1559. doi: 10.1080/13588265.2021.1929760.
  • Deshpande BR, Gunasekar TJ, Gupta V, et al. Development of MADYMO models of passenger vehicles for simulating side impact crashes. SAE Paper 1999-01-2885; 1999.
  • Dai Y, Duan C. Beam element modelling of vehicle body-in-white applying artificial neural network. Appl Math Modell. 2009;33(6):2808–2817. doi: 10.1016/j.apm.2008.08.013.
  • Deb A, Gunti R, Chou C, et al. Use of truncated finite element modeling for efficient design optimization of an automotive front end structure. SAE Technical Paper 2015-01-0496; 2015.
  • Dwivedi R, Peddi S. Vehicle sub-structuring’ strategies for faster crash simulations. FISITA World Automotive Congress 2018, F2018-APS-038; 2018.
  • Song JO. An optimization method for crashworthiness design. SAE Trans. 1986;95(Section 4):171–178.
  • Buyuk M, Steve Kan CD, Bedewi NE. Moving beyond finite elements: a comparison between the finite element methods and meshless methods for a ballistic impact simulation. 8th International LS-DYNA Users Conference; 2004.
  • Kim NH, Choi KK, Chen JS, et al. Meshfree analysis and design sensitivity analysis for shell structures. Int J Numer Meth Eng. 2002;53(9):2087–2116. doi: 10.1002/nme.385.
  • Tang Z, Liu FJ, Guo SH, et al. Evaluation of coupled finite element/meshfree method for a robust full-scale crashworthiness simulation of railway vehicles. Adv Mech Eng. 2016;8(4):168781401664295. doi: 10.1177/1687814016642954.
  • Wang HP, Wu CT, Guo Y, et al. A coupled meshfree/finite element method for automotive crashworthiness simulations. Int J Impact Eng. 2009;36(10–11):1210–1222. doi: 10.1016/j.ijimpeng.2009.03.004.
  • McCarthy MA, Xiao JR, Petrinic N, et al. Modelling bird impacts on an aircraft wing – part 1: material modelling of the fibre metal laminate leading edge material with continuum damage mechanics. Int J Crashworthiness. 2005;10(1):41–49. doi: 10.1533/ijcr.2005.0324.
  • Hedayati R, Ziaei-Rad S. Effect of bird geometry and orientation on bird-target impact analysis using SPH method. Int J Crashworthiness. 2012;17(4):445–459. doi: 10.1080/13588265.2012.674333.
  • Noorsumar, G., Robbersmyr, K. G., Rogovchenko, S., & Vysochinskiy, D. (2021, October). An Overview of Data Based Predictive Modeling Techniques Used in Analysis of Vehicle Crash Severity. In International Conference on Intelligent Technologies and Applications (pp. 355–366). Cham: Springer International Publishing, Switzerland.
  • Zhang Y, Wu Y. Introducing machine learning models to response surface methodologies. In: Response surface methodology in engineering science. IntechOpen, 2021, Greater London, United Kingdom. doi: 10.5772/intechopen.98191.
  • Omar T, Eskandarian A, Bedewi N. Vehicle crash modelling using recurrent neural networks. Math Comput Modell. 1998;28(9):31–42. doi: 10.1016/S0895-7177(98)00143-5.
  • Zheng L, Gao Y, Zhan Z, et al. Multi objective optimization of vehicle crashworthiness based on combined surrogate models. SAE Technical Paper 2017-01-1473. 2017. doi: 10.4271/2017-01-1473.
  • Shankar H, Selvaraju R, Sankarasubramanian H. Metamodel generation for frontal crash scenario of a passenger car. SAE Technical Paper 28-0504; 2020. doi: 10.4271/2020-28-0504.
  • Du X, Zhu F, Chou C. A new data-driven design method for thin-walled vehicular structures under crash loading. SAE Int J Trans Safety. 2017;5(2):188–193. doi: 10.4271/2017-01-1463.
  • Azimi MB, Asgari M. Energy absorption characteristics and a meta-model of miniature frusta under axial impact. Int J Crashworthiness. 2016;21(3):222–230. doi: 10.1080/13588265.2016.1164445.
  • Tangudu S, Rongali P. CAE performance prediction using machine learning model based on historical data. SAE Technical Paper 2021-26-0401. 2021. doi: 10.4271/2021-26-0401.
  • Kaushik B, Daphal P, Khare P, et al. Pedestrian safety performance prediction using machine learning techniques. SAE Technical Paper 2021-26-0026. 2021. doi: 10.4271/2021-26-0026.
  • Abramowicz W. Thin-walled structures as impact energy absorbers. Thin Walled Struct. 2003;41(2–3):91–107. doi: 10.1016/S0263-8231(02)00117-1.
  • Abramowicz W. An alternative formulation of the FE method for arbitrary discrete/continuous models. Int J Impact Eng. 2004;30(8–9):1081–1098. doi: 10.1016/j.ijimpeng.2003.10.007.
  • Mamalis AG, Manolakos DE, Ioannidis MB, et al. Finite element simulation of the axial collapse of thin-wall square frusta. Int J Crashworthiness. 2001;6(2):155–164. doi: 10.1533/cras.2001.0169.
  • Reddy TJ, Narayanamurthy V, Rao YVD. Study on crush tube geometric cross sections and topology for axial crashworthiness. Def Sci J. 2020;70(3):249–259. doi: 10.14429/dsj.70.14345.
  • Narayana PSR, Prakash RV, Gunti S, et al. Maximizing the energy absorption capacity of thin-walled box structures using ultra-high-strength steels (UHSS) at sensitive zones. In: Tadepalli T, Narayanamurthy V, editors. Recent advances in applied mechanics. Lecture notes in mechanical engineering. Singapore: Springer; 2022. p. 207–218. doi: 10.1007/978-981-16-9539-1_16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.