123
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Aircraft crashworthiness: modelling of fuel inside a conformable tank

&
Pages 611-625 | Received 09 May 2022, Accepted 03 Oct 2023, Published online: 08 Oct 2023

References

  • Bayer A. Crashworthiness study of a boeing 737 fuselage section [PhD thesis]. Philadelphia (PA): Drexel University; 2003. Available from: https://idea.library.drexel.edu/islandora/object/idea%3A278
  • Tan T, Awerbuch J, Lau ACW, et al. Development of computational models for simulating full-scale crash tests of aircraft fuselage and components. Philadelphia (PA): Drexel University; 2012. Available from: http://www.tc.faa.gov/its/worldpac/techrpt/ar10-34.pdf
  • Fasanella EL, Jackson KE. Crash simulation of a boeing 737 fuselage section vertical drop test. Atlantic City (NJ): NASA Langley Research Center; 2004. Available from: https://ntrs.nasa.gov/api/citations/20040086069/downloads/20040086069.pdf
  • Fasanella EL, Jackson KE.. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage. Atlantic City (NJ): Federal Aviation Administration; 2004. Available from: https://www.fire.tc.faa.gov/2001Conference/files/CrashAnalyticalModelingSimulation/KJacksonPAPER.pdf
  • Jackson K, Fasanella E. Crash simulation of a vertical drop test of a commuter-class aircraft. Int J Crashworthiness. 2005;10(2):173–182. doi:10.1533/ijcr.2005.0336.
  • Minegishi M, Kumakura I, Iwasaki K, et al. Vertical drop test of a YS-11 fuselage section. J Jpn Soc Aeronaut Space Sci. 2003;51(594):354–363. doi:10.2322/jjsass.51.354.
  • Iwasaki K, Kumakura I, Minegishi M, et al. Vertical drop test of a YS-11 fuselage section (part 2). J Jpn Soc Aeronaut Space Sci. 2003;51(599):675–682. doi:10.2322/jjsass.51.675.
  • Liu X, Guo J, Bai C, et al. Drop test and crash simulation of a civil airplane fuselage section. Chin J Aeronaut. 2015;28(2):447–456. doi:10.1016/j.cja.2015.01.007.
  • Perfetto D, De Luca A, Lamanna G, et al. Drop test simulation and validation of a full composite fuselage section of a regional aircraft. Proc Struct Integrity. 2018;12:380–391. doi:10.1016/j.prostr.2018.11.079.
  • Riccio A, Saputo S, Sellitto A, et al. An insight on the crashworthiness behavior of a Full-Scale composite fuselage section at different impact angles. Aerospace. 2019;6(6):72. doi:10.3390/aerospace6060072.
  • Caputo F, Lamanna G, Perfetto D, et al. Experimental and numerical crashworthiness study of a Full-Scale composite fuselage section. AIAA J. 2021;59(2):700–718. doi:10.2514/1.J059216.
  • Lee K, Jung J, Hong J. Advanced aircraft analysis of an F-4 phantom on a reinforced concrete building. Nucl Eng Des. 2014;273:505–528. doi:10.1016/j.nucengdes.2014.02.032.
  • Fasanella EL, Jackson KE. Crash simulation of a Boeing 737 fuselage section vertical drop test. Hampton (VA): NASA Langley Research Center; 2004. Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170007187.pdf.
  • Tay Y, Flores P, Lankarani H. Crashworthiness analysis of an aircraft fuselage section with an auxiliary fuel tank using a hybrid multibody/plastic hinge approach. Int J Crashworthiness. 2020;25(1):95–105. doi:10.1080/13588265.2018.1524547.
  • Gransden D, Alderliesten R. Development of a finite element model for comparing metal and composite fuselage section drop testing. Int J Crashworthiness. 2017;22(4):401–414. doi:10.1080/13588265.2016.1273987.
  • Xue P, Ding L, Qiao F, et al. Crashworthiness study of a civil aircraft fuselage section. Lat Am j Solids Struct. 2014;11(9):1615–1627. doi:10.1590/S1679-78252014000900007.
  • Mou H, Zou T, Feng Z, et al. Crashworthiness analysis and evaluation of fuselage section with Sub- floor composite sinusoidal specimens. Lat Am j Solids Struct. 2016;13(6):1186–1202. doi:10.1590/1679-78252446.
  • Ren Y, Xiang J, Zheng J, et al. Crashworthiness analysis of aircraft fuselage with sine-wave beam structure. Chin J Aeronaut. 2016;29(2):403–410. doi:10.1016/j.cja.2016.02.002.
  • Meng F, Zhou Q, Yang J. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. Int J Crashworthiness. 2009;14(1):83–97. doi:10.1080/13588260802517360.
  • Zheng J, Xiang J, Luo Z, et al. Crashworthiness design of transport aircraft subfloor using polymer foams. Int J Crashworthiness. 2011;16(4):375–383. doi:10.1080/13588265.2011.593979.
  • Heimbs S, Strobl F, Middendorf P, et al. Composite crash absorber for aircraft fuselage applications. In: Structures under Shock and Impact XI; 2010. doi:10.2495/SU100011.
  • Reddy T, Rao Y, Narayanamurthy V. Analysis of structural configurations for assessment of crashworthiness. Proc Eng. 2017;173:1357–1364. doi:10.1016/j.proeng.2016.12.180.
  • Ren Y, Zhang H, Xiang J. A novel aircraft energy absorption strut system with corrugated composite plate to improve crashworthiness. Int J Crashworthiness. 2018;23(1):1–10. doi:10.1080/13588265.2017.1301082.
  • Paz J, Díaz J, Romera L. Crashworthiness analysis and enhancement of aircraft structures under vertical impact scenarios. J Aircraft. 2020;57(1):3–12. doi:10.2514/1.C035435.
  • Xue P, Wang L, Qiao C. Crashworthiness study on fuselage section and struts under cabin floor. Int J Prot Struct. 2011;2(4):515–525. doi:10.1260/2041-4196.2.4.515.
  • Zou T, Mou H, Feng Z. Research on effects of oblique struts on crashworthiness of composite fuselage sections. J Aircraft. 2012;49(6):2059–2063. doi:10.2514/1.C031867.
  • Ren Y, Xiang J. The crashworthiness of civil aircraft using different quadrangular tubes as cabin-floor struts. Int J Crashworthiness. 2011;16(3):253–262. doi:10.1080/13588265.2011.554204.
  • Waimer M, Kohlgrüber D, Keck R, et al. Contribution to an improved crash design for a composite transport aircraft fuselage—development of a kinematics model and an experimental component test setup. CEAS Aeronaut J. 2013;4(3):265–275. doi:10.1007/s13272-013-0070-3.
  • Schatrow P, Waimer M. Crash concept for composite transport aircraft using mainly tensile and compressive absorption mechanisms. CEAS Aeronaut J. 2016;7(3):471–482. doi:10.1007/s13272-016-0203-6.
  • German Aerospace Centre (DLR). Advanced lattice structures for composite airframes. Braunschweig; 2013. Available from: https://cordis.europa.eu/docs/results/265881/final1-2014-03-06-alasca-final-report-submitted.pdf.
  • CNN. Airplane crash-lands into Hudson River; all aboard reported safe; 2009. Available from: https://edition.cnn.com/2016/08/11/us/hudson-landing-archive-news-story/index.html.
  • Jackson KE, Fuchs Y. Comparison of ALE and SPH simulations of vertical drop tests of a composite fuselage section into water. Detroit: NASA Langley Research Center; 2008. Available from: https://ntrs.nasa.gov/api/citations/20080022946/downloads/20080022946.pdf.
  • Siemann M, Langrand B. Coupled fluid-structure computational methods for aircraft ditching simulations: comparison of ALE-FE and SPH-FE approaches. Comput Struct. 2017;188:95–108. doi:10.1016/j.compstruc.2017.04.004.
  • Hua C, Fang C, Cheng J. Simulation of Fluid-Solid interaction on water ditching of an airplane by ale method. J Hydrodyn. 2011;23(5):637–642. doi:10.1016/s1001-6058(10)60159-x.
  • Tay Y, Bhonge P, Lankarani H. Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact. Int J Crashworthiness. 2015;20(5):464–482. doi:10.1080/13588265.2015.1033972.
  • Sareen A, Fasanella EL, Sparks C, Jr., et al. Comparison of hard surface and soft soil impact performance of a crashworthy composite fuselage concept. In: American Helicopter Society 58th Annual Forum; 2002. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.5306&rep=rep1&type=pdf.
  • Fasanella EL, Jackson KE, Lyle KH. Comparisons of the impact responses of a 1/5-scale model and a full-scale crashworthy composite fuselage section. In: American Helicopter Society 59th Annual Forum; 2003. Available from: https://ntrs.nasa.gov/api/citations/20030065638/downloads/20030065638.pdf.
  • Adams A, Thorbole C, Lankarani H. Scale modelling of aircraft fuselage: an innovative approach to evaluate and improve crashworthiness. Int J Crashworthiness. 2010;15(1):71–82. doi:10.1080/13588260903047663.
  • Mou H, Du Y, Zou T. Effects of different roll angles on civil aircraft fuselage crashworthiness. Adv Aircraft Spacecraft Sci. 2015;2(4):391–401. doi:10.12989/aas.2015.2.4.391.
  • Feng Z, Mou H, Zou T, et al. Research on effects of composite skin on crashworthiness of composite fuselage section. Int J Crashworthiness. 2013;18(5):459–464. doi:10.1080/13588265.2013.805291.
  • Aviation UA, Command M. Detail specification for the tank, fuel, crash-resistant, ballistic-tolerant, aircraft. MIL-DTL-27422D. US Department of Defense Index of Specifications and Standards; 2014. Available from: http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-DTL/MIL-DTL-27422F_49706/.
  • Anghileri M, Castelletti L, Tirelli M. Fluid–structure interaction of water filled tanks during the impact with the ground. Int J Impact Eng. 2005;31(3):235–254. doi:10.1016/j.ijimpeng.2003.12.005.
  • Adams A, Lankarani H. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. Int J Crashworthiness. 2003;8(4):401–413. doi:10.1533/ijcr.2003.0234.
  • Abromowitz A, Smith G, Vu T. Vertical drop test of a narrow body transport fuselage section with a conformable auxiliary fuel tank onboard. Springfield (VA): National Technical Information Service (NTIS); 2000. Available from: https://www.fire.tc.faa.gov/2001Conference/files/CrashAirframeStructure/GFringsPAPER.pdf.
  • Fasanella EL, Jackson KE. Best practices for crash modeling and simulation. Springfield (VA): National Technical Information Service (NTIS); 2004. Available from: https://ntrs.nasa.gov/api/citations/20020085101/downloads/20020085101.pdf.
  • Fasanella EL, Jackson KE. Test-analysis correlation of a crash simulation of a vertical drop test of a commuter-class aircraft. Springfield (VA): National Technical Information Service (NTIS); 2004. Available from: https://ntrs.nasa.gov/api/citations/20040191338/downloads/20040191338.pdf.
  • Ansys Explicit Material Library. Ansys, Inc., Pennsylvania, United States; 2021.
  • Material Models, Introduction to Ansys Autodyn Part II. Ansys, Inc., Pennsylvania, United States; 2015.
  • Mou H, Zou T, Feng Z, et al. Crashworthiness simulation research of fuselage section with composite skin. Procedia Eng. 2014;80:59–65. doi:10.1016/j.proeng.2014.09.060.
  • Rayhan SB, Pu X, Huilong X. Modeling of fuel in aircraft crashworthiness study with auxiliary fuel tank. Int J Impact Eng. 2023;173:104449. doi:10.1016/j.ijimpeng.2022.104449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.