34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crashworthiness analysis and optimisation of a multi-level bionic multi-cell tube under axial dynamic impact

, , , , &
Received 23 Dec 2022, Accepted 04 Jun 2024, Published online: 22 Jun 2024

References

  • Jabbari P, Auld J, Mackenzie D. How do perceptions of safety and car ownership importance affect autonomous vehicle adoption? Travel Behav Soc. 2022;28:128–140. doi: 10.1016/j.tbs.2022.02.002.
  • Li J, Gao G, Dong H. Crushing analysis and multi-objective optimization of a railway vehicle driver’s cab. Thin Walled Struct. 2016;107:554–563. doi: 10.1016/j.tws.2016.07.014.
  • Mou H, Xie J, Feng Z. Research status and future development of crashworthiness of civil aircraft fuselage structures: an overview. Prog Aerosp Sci. 2020;119:100644. doi: 10.1016/j.paerosci.2020.100644.
  • Yang X, Ma J, Wen D, et al. Crashworthy design and energy absorption mechanisms for helicopter structures: a systematic literature review. Prog Aerosp Sci. 2020;114:100618. doi: 10.1016/j.paerosci.2020.100618.
  • Zhou HZ, Wang ZJ. Application of foldcore sandwich structures in helicopter subfloor energy absorption structure. IOP Conf Ser Mater Sci Eng. 2017;248:012033. doi: 10.1088/1757-899X/248/1/012033.
  • Jones N. Energy-absorbing effectiveness factor. Int J Impact Eng. 2010;37(6):754–765. doi: 10.1016/j.ijimpeng.2009.01.008.
  • Acar E, Altin M, Güler MA. Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes. Thin Walled Struct. 2019;142:227–235. doi: 10.1016/j.tws.2019.05.012.
  • Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. Int J Impact Eng. 1984;2(3):263–281. doi: 10.1016/0734-743X(84)90010-1.
  • Ming S, Zhou C, Li T, et al. Energy absorption of thin-walled square tubes designed by kirigami approach. Int J Mech Sci. 2019;157–158:150–164. doi: 10.1016/j.ijmecsci.2019.04.032.
  • Zhou J, Qin R, Chen B. Energy absorption properties of multi-cell thin-walled tubes with a double surface gradient. Thin Walled Struct. 2019;145:106386. doi: 10.1016/j.tws.2019.106386.
  • Wang Z, Li Z, Shi C, et al. Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure. Thin Walled Struct. 2019;134:102–110. doi: 10.1016/j.tws.2018.09.017.
  • Chen W, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin Walled Struct. 2001;39(4):287–306. doi: 10.1016/S0263-8231(01)00006-4.
  • Fang J, Gao Y, Sun G, et al. On design of multi-cell tubes under axial and oblique impact loads. Thin Walled Struct. 2015;95:115–126. doi: 10.1016/j.tws.2015.07.002.
  • Pirmohammad S, Ghahremanzadeh Z. Crushing behavior of multi-cell tubes with a novel pattern of design for their cross-section under multiple crushing angles. Mech Adv Mater Struct. 2021;29(28):7441–7458. doi: 10.1080/15376494.2021.2000079.
  • Jin MZ, Yin GS, Hao WQ, et al. Energy absorption characteristics of multi-cell tubes with different cross-sectional shapes under quasi-static axial crushing. Int J Crashworthiness. 2022;27(2):565–580. doi: 10.1080/13588265.2020.1826825.
  • Li D, Zhang X, Qin R, et al. Crashworthiness analysis and uncertainty optimization of novel multi-wall tube. Int J Crashworthiness. 2023;29(1):151–162. doi: 10.1080/13588265.2023.2205574.
  • Wu J, Zhang Y, Zhang F, et al. A bionic tree-liked fractal structure as energy absorber under axial loading. Eng Struct. 2021;245:112914. doi: 10.1016/j.engstruct.2021.112914.
  • Fu J, Liu Q, Liufu K, et al. Design of bionic-bamboo thin-walled structures for energy absorption. Thin Walled Struct. 2019;135:400–413. doi: 10.1016/j.tws.2018.10.003.
  • Palombini FL, Mariath JEdA, de Oliveira BF. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin Walled Struct. 2020;155:106936. doi: 10.1016/j.tws.2020.106936.
  • Yin H, Xiao Y, Wen G, et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure. Mater Design. 2015;87:825–834. doi: 10.1016/j.matdes.2015.08.095.
  • Hao P, Du J. Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading. J Mech Behav Biomed Mater. 2018;79:301–308. doi: 10.1016/j.jmbbm.2018.01.001.
  • Xiang J, Du J, Li D, et al. Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra. J Mater Sci. 2017;52(22):13247–13260. doi: 10.1007/s10853-017-1420-z.
  • Zou M, Xu S, Wei C, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo. Thin Walled Struct. 2016;101:222–230. doi: 10.1016/j.tws.2015.12.023.
  • He Q, Wang Y, Shi X, et al. Crushing behavior on the cylindrical tube based on lotus leaf vein branched structure. Mech Mater. 2022;165:104205. doi: 10.1016/j.mechmat.2021.104205.
  • Huang H, Xu S. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads. Thin Walled Struct. 2019;144:106333. doi: 10.1016/j.tws.2019.106333.
  • Huang F, Zhou X, Zhou D, et al. Crashworthiness analysis of bio-inspired hierarchical circular tube under axial crushing. J Mater Sci. 2022;58(1):101–123. doi: 10.1007/s10853-022-07982-3.
  • Qin L, Yang S, Li H, et al. Crashworthiness design of bionic-shell thin-walled tube under axial impact. J Mech Sci Technol. 2023;37(7):3427–3436. doi: 10.1007/s12206-023-0608-1.
  • Tsang HH, Raza S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy. Compos Struct. 2018;195:199–210. doi: 10.1016/j.compstruct.2018.04.057.
  • Tsang HH, Tse KM, Chan KY, et al. Energy absorption of muscle-inspired hierarchical structure: experimental investigation. Compos Struct. 2019;226:111250. doi: 10.1016/j.compstruct.2019.111250.
  • Zhang Y, Xu X, Wang J, et al. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. Int J Mech Sci. 2018;140:407–431. doi: 10.1016/j.ijmecsci.2018.03.015.
  • Gao Z, Zhang H, Zhao J, et al. The axial crushing performance of bio-inspired hierarchical multi-cell hexagonal tubes. Int J Mech Sci. 2022;239:107880. doi: 10.1016/j.ijmecsci.2022.107880.
  • Gong C, Bai Z, Lv J, et al. Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems. Thin Walled Struct. 2020;157:107081. doi: 10.1016/j.tws.2020.107081.
  • Deng X, Qin S, Huang J. Crashworthiness analysis of gradient hierarchical multicellular columns evolved from the spatial folding. Mater Design. 2022;215:110435. doi: 10.1016/j.matdes.2022.110435.
  • Ha NS, Pham TM, Hao H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. Int J Mech Sci. 2021;201:106464. doi: 10.1016/j.ijmecsci.2021.106464.
  • Ha NS, Pham TM, Chen W, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell bi-tubular tubes. Int J Mech Sci. 2023;251:108260. doi: 10.1016/j.ijmecsci.2023.108260.
  • Huang H, Xu S, Du W, et al. Energy absorption analysis and optimization of a bionic thin-walled tube based on shrimp chela. Trans Beijing Inst Technol. 2020;40(3):267–274.
  • Xu H, Zhang Y, Wang J, et al. A universal transfer-learning-based detection model for characterizing vascular bundles in Phyllostachys. Ind Crops Prod. 2022;180:114705. doi: 10.1016/j.indcrop.2022.114705.
  • Shao ZP, Fang CH, Huang SX, et al. Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci Technol. 2010;44(4):655–666. doi: 10.1007/s00226-009-0290-1.
  • Shang L, Sun Z, Guo W. Tensile properties of moso bamboo vascular bundles. For Mach Woodwork Equip. 2011;39(7):17–20.
  • Xiang Y, Wang M, Yu T, et al. Key performance indicators of tubes and foam-filled tubes used as energy absorbers. Int J Appl Mech. 2015;07(04):1550060. doi: 10.1142/S175882511550060X.
  • Yang H, Ren Y, Yan L. Multi-cell designs for improving crashworthiness of metal tube under the axial crushing load. Int J Crashworthiness. 2022;28(3):365–377. doi: 10.1080/13588265.2022.2076637.
  • Albak Eİ. Optimization design for circular multi-cell thin-walled tubes with discrete and continuous design variables. Mech Adv Mater Struct. 2022;30(24):5091–5105. doi: 10.1080/15376494.2022.2111735.
  • Gong C, Bai Z, Wang Y, et al. On the crashworthiness performance of novel hierarchical multi-cell tubes under axial loading. Int J Mech Sci. 2021;206:106599. doi: 10.1016/j.ijmecsci.2021.106599.
  • Lu G, Yu TX. Energy absorption of structures and materials. Amsterdam, Netherlands: Elsevier; 2003.
  • Marshall NS. Active control of passive safety in passenger motor vehicles: a feasibility study investigating dynamic denting of members using pyrotechnic devices. 1995. [accessed September 2, 2022]. Available from: https://open.uct.ac.za/handle/11427/22084
  • Santosa SP, Wierzbicki T, Hanssen AG, et al. Experimental and numerical studies of foam-filled sections. Int J Impact Eng. 2000;24(5):509–534. doi: 10.1016/S0734-743X(99)00036-6.
  • Tran T, Hou S, Han X, et al. Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. Int J Mech Sci. 2014;89:177–193. doi: 10.1016/j.ijmecsci.2014.08.027.
  • Gong C, Hu Y, Bai Z. Crashworthiness analysis and optimization of lotus-inspired bionic multi-cell circular tubes. Mech Adv Mater Struct. 2022;30(24):4996–5014. doi: 10.1080/15376494.2022.2111622.
  • Yin H, Meng F, Zhu L, et al. Optimization design of a novel hybrid hierarchical cellular structure for crashworthiness. Compos Struct. 2023;303:116335. doi: 10.1016/j.compstruct.2022.116335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.