764
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Alternative friction stir welding technology for titanium–6Al–4V propellant tanks within the space industry

&
Pages 300-318 | Received 04 Jun 2016, Accepted 01 Sep 2016, Published online: 24 Feb 2017

References

  • Fortescue P, Swinerd G, Stark J. Spacecraft systems engineering. 4th ed. West Sussex: J. Wiley & Sons Ltd; 2011.
  • European Space Agency. 2014. Clean space – green technology [cited 2015 July]. Available from: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/Green_technologies
  • ANSI AIAA S-080. Space systems – metallic pressure vessels, pressurised structures and pressure components. Reston (VA): American Institute of Aeronautics and Astronautics; 1998.
  • Debreceni MJ, Kuo TK, Jaekle DE. Development of a titaniumpropellant tank. 39th AIAA/ASME/SAE/ASEE joint propulsion conference, July 20–23; Huntsville, AL; 2003.
  • Tam WH, Kawahara GH, Jaekle DE, et al. Design and manufacture of a propellant tank assembly. 36th AIAA/ASME/SAE/ASEE joint propulsion conference; Huntsville, AL; 2000.
  • EADS Astrium GmbH. Spacecraft propellant tank manufacture [cited 2015 July]. Available from: http://cs.astrium.eads.net/sp/spacecraft-propulsion/propellant-tanks/manufacturing.html
  • European Space Agency. 2015. Launch Vehicles – Ariane 5 [cited 2015 June]. Available from: http://www.esa.int/Our_Activities/Launchers/Launch_vehicles/Ariane_5
  • Schultz H. Electron beam welding. Cambridge: Abington Publishing; 1993.
  • Buhl N, Wagner G, Eifler D, et al. 2013. Microstructural and mechanical investigations of friction stir welded Ti/Ti and Ti Alloy/Ti Alloy Joints. Friction stir welding processes VII, 141–149.
  • Rummel WD. Recommended practice for demonstration of non-destructive evaluation reliability in aircraft parts. Mater Eval. 1982;40:922–931.
  • NASA. 1996. Non-destructive evaluation requirements for fracture critical metallic components [cited 2015 July]. Available from: https://standards.nasa.gov/training/nasa-std-5009/index.html
  • Raj B, Jayakumar T, Thavasimuthu M. Practical non-destructive testing. 3rd ed. Oxford: Alpha Science International Ltd; 2009.
  • Ecord G M. NASA TN D-6975. Apollo experience report – pressure vessels. Houston (TX): NASA Manned Spacecraft Centre; 1972.
  • Ding J, Carter B, Lawless K, et al. A decade of friction stir welding R & D at NASAs Marshall space flight centre. Huntsville (AL): NASA Marshall Space Flight Centre; 2006.
  • Thomas WM, Nicholas ED, Needham JC, et al. The welding institute. Improvements relating to friction welding. International patent application. PCT/GB92/02203; 1992.
  • The Welding Institute. Friction stir welding patents – a stirring story [cited 2015 Aug]. Available from: http://www.twi-global.com/news-events/case-studies/friction-stir-welding-patents-a-stirring-story-002/
  • The Welding Institute. Knowledge summary – friction processing technology [cited 2015 July]. Available from: http://www.twi-global.com/technical-knowledge/knowledge-summaries/friction-processing-technologies/
  • Lohwasser D, Chen Z. Friction stir welding – from basics to application. Cambridge: Woodhead Publishing Limited; 2010.
  • Thomas WM, Norris IM, Staines DG, et al. Friction stir welding – process developments and variant techniques. Wisconsin: The Society of Manufacturing Engineers Conference; 2005.
  • Russell MJ, Blignault C, Horrex NL, et al. Recent developments in the friction stir welding of titanium alloys. Weld World. 2008;52(9):12–15. doi: 10.1007/BF03266662
  • Lauro A. Friction stir welding of titanium alloys. Weld Int J. 2011;26(1):8–21. doi: 10.1080/09507116.2011.581351
  • Edwards PD, Ramulu M. Peak temperatures during friction stir welding of titanium 6Al-4V. Sci Technol Weld Join. 2010;15(6):468–472. doi: 10.1179/136217110X12665778348425
  • Shtrikman MM. Trends in the development of the friction stir welding process. Weld Int J. 2015;29(3):230–239. doi: 10.1080/09507116.2014.911427
  • European Space Agency. GSTP-6 Element 1 – compendium of potential activities advanced manufacturing. TEC-T/2015-013/NP. Noordwijk, Netherlands: European Space Agency; 2015.
  • European Space Agency. Technology readiness levels. June 18th 2015 [cited 2015 Sep]. Available from: http://sci.esa.int/sre-ft/50124-technology-readiness-level/
  • Crocker AM, Doering KB, Meadows RG. Update on risk reduction activities for an F-1-based Advanced Booster for NASAs Space Launch System. 50th AIAA/ASME/SAE/ASEE Joint Propulsion conference; 2014 July 28–30; Cleveland, OH.
  • Threadgill PL, Leonard AJ, Shercliff HR, et al. 2009 [cited 2015 Aug]. The Welding Institute. Friction stir welding of aluminium alloys. Available from: http://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-of-aluminium-alloys/
  • Edwards PD, Coleman G, Petersen M, et al. Mechanical properties of thick section titanium 6Al-4V friction stir and electron beam welds. In: Mishra R, Mahoney MW, Sato Y, Hovanski Y, Verma R, editors. Friction stir welding and processing VI. Seattle: Wiley and Sons, Inc.; 2011. p. 73–79.
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Can Metall Quart., 2012;51:250–261. doi: 10.1179/1879139512Y.0000000015
  • Edwards PD, Ramulu M. Material flow during friction stir welding of Ti-6Al-4V. J Mater Process Technol. 2015;218:107–115. doi: 10.1016/j.jmatprotec.2014.11.046
  • Thompson B. Tungsten based tool material development for the friction stir welding of hard metals. In: Mishra R, Mahoney MW, Sato Y, Hovanski Y, Verma R, editors. Friction stir welding and processing VI. Seattle: Wiley and sons inc.; 2011. p. 105–112.
  • Edwards PD, Ramulu M. Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses. Sci Technol Weld Join. 2009;14(5):476–483. doi: 10.1179/136217109X425838
  • Edwards PD, Ramulu M. Effect of process conditions on superplastic forming behaviour in Ti-6Al-4V Friction stir welds. Sci Technol Weld Join. 2010;14(7):669–680. doi: 10.1179/136217109X12464549883330
  • Buffa G, Fratini L, Micari F. On the choice of tool material in friction stir welding of titanium alloys. Vol. 40, North American manufacturing research conference, Notre Dame, IN, USA; 2012.
  • Thompson B. Tool degradation characterization in the friction stir welding of hard metals [MSc thesis]. Ohio State University; 2010.
  • Thompson B. Friction stir welding of hardmetals using advanced refractory alloys – Report No. MR1013. EWI Cooperative Research Program Report; 2010.
  • Rai R, De A, Bhadeshia HKDH, et al. Review friction stir welding tools. Sci Technol Weld Join. 2011;16(4):325–342. doi: 10.1179/1362171811Y.0000000023
  • Zhang Y, Sato YS, Kokawa H, et al: Stir zone microstructure of commercial purity titanium friction stir welded using PCBN tool. Mater Sci Eng J. 2008;488:25–30. doi: 10.1016/j.msea.2007.10.062
  • Kumar N, Rodelas J, Mishra RS. The effects of friction stir processing on the microstructural evolution and mechanical properties of Ti-6Al-4V Alloy. Friction stir welding and processing. TMS Annual Meeting, San Francisco, CA; 2009. p. 45–53.
  • Mishra RS, Mahoney MW. Friction stir welding and processing. Materials Park (OH): ASM International; 2007.
  • Boyer R, Welsch G, Collings EW, editors. Materials properties handbook: titanium alloys. Cleveland (OH): ASM International; 1994.
  • Lütjering G, Williams JC. Titanium. 2nd ed. New York (NY): Springer; 2007.
  • Porter DA, Easterling KE. Phase transformations in metals and alloys. Berkshire: Van Nostrand Reinhold (UK) Co. Ltd; 1981.
  • Metals Handbook, Vol.2. Properties and selection – nonferrous alloys and special-purpose materials. 10th ed. Cleveland (OH): ASM International; 1990.
  • Thomas WM, Staines DG, Norris IM, et al. Friction stir welding – tools and developments. Weld World. 2002;47(11):10–17.
  • Deformation induced abnormal grain growth in friction stir weld during solution heat treatment (cited 2016 March). Available from: https://www.linkedin.com/pulse/deformation-induced-abnormal-grain-growth-friction-stir-anupam-kundu. Written by Anupam Kundu.
  • Zhang Y, Sato YS, Kokawa H, et al. Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds. Mater Sci Eng. 2008;485(1):448–455. doi: 10.1016/j.msea.2007.08.051
  • Kitamura K, Fujii H, Iwata Y, et al. Flexible control of the microstructure and mechanical properties of friction stir welded Ti-6Al-4V Joints. Mater Des J. 2013;46:348–354. doi: 10.1016/j.matdes.2012.10.051
  • Esmaily M, Mortazavi SN, Todehfalah P, et al. Microstructural characterisation and formation of α′ martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes. Mater Des. 2013;47:143–150. doi: 10.1016/j.matdes.2012.12.024
  • Zhou L, Liu HJ, Liu QW. Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints. Mater Des. 2010;31:2631–2636. doi: 10.1016/j.matdes.2009.12.014
  • Liu HJ, Zhou L, Liu QW. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy. Mater Des. 2010;31:1650–1655. doi: 10.1016/j.matdes.2009.08.025
  • Sanders DG, Edwards P, Cantrell AM, et al. Friction stir-welded titanium alloy Ti-6Al-4V: microstructure, mechanical and fracture properties. J Miner Met Mater. 2015;67(5):1054–1063. doi: 10.1007/s11837-015-1376-x
  • Edwards PD, Ramulu M. Fracture toughness and fatigue crack growth in Ti-6Al-4V friction stir welds. Fatigue Fract Eng Mater Struct. 2015;38:970–982. doi: 10.1111/ffe.12291
  • Edwards PD, Ramulu M. Surface residual stresses in Ti-6Al-4V friction stir welds pre- and post-thermal stress relieve. J Mater Eng Perform. 2015;24(9):3263–3270. doi: 10.1007/s11665-015-1610-2
  • Pasta S, Reynolds AP. Residual stress effects on fatigue crack growth in a Ti-6Al-4V friction stir weld. Fatigue Fract Eng Mater Struct. 2008;31:569–580. doi: 10.1111/j.1460-2695.2008.01258.x
  • Steuwer P, Hattingh DG, James MN, et al. Residual stresses, microstructure and tensile properties in Ti-6Al-4V friction stir welds. Sci Technol Weld Join. 2012;17(7):525–533. doi: 10.1179/136217112X13439160184196
  • Donachie MJ. Titanium – a technical guide. 2nd ed. Cleveland (OH): ASM International; 2000.
  • Atapour M, Pilchak AL, Frankel GS, et al. Corrosion behaviour of friction stir processed and gas tungsten arc welded Ti-6Al-4V. Metall Mater Trans. 2010;41(9):2318–2327. doi: 10.1007/s11661-010-0304-5
  • Bussu G, Stramaccioni D, Kalsch I. Experimental assessment of the susceptibility to stress corrosion cracking of Ti-6Al-4V alloy exposed to MON-1 propellant tank environment. ESA International Propulsion Conference, June 2–4; Sardini, 2004.
  • Russell MJ, Threadgill PL, Thomas MJ, et al. Static shoulder friction stir welding of Ti-6Al-4V. 11th World Conference on Titanium, 2007 July 3–7; Kyuoto, Japan: Japan Institute of Metals; 2007. p. 1095–1098.
  • The Welding Institute. Friction stir welding process variants and recent industrial developments, 2007 [cited 2015 Sep]. Available from: http://www.twi-global.com/EasysiteWeb/getresource.axd?AssetID=2846145
  • Davies PS, Wynne BP, Rainforth WM, et al. Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti-6Al-4V. Metall Mater Trans. 2010;42(8):2278–2289. doi: 10.1007/s11661-011-0606-2
  • Stotler T, Bernath J. Friction stir welding advances – Edison Welding Institute. Adv Mater Process. 2009;167(3): 35–37.
  • Kou S, Cao G. 2006. Wisconsin Alumni Research Foundation. Arc-enhanced friction stir welding. Patent No. US,7078,647 B2, 2006 [cited September 2015]. Available from: http://www.warf.org/documents/ipstatus/P05041US.PDF.
  • Bang H, Bang H, Jeon G, et al. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials AA 6061-T6 Aluminium Alloy and STS 304 stainless steel. Mater Des. 2012;37:48–55. doi: 10.1016/j.matdes.2011.12.018
  • Bang H, Bang H, Song H, et al. Joint properties of dissimilar Al6061-T6 aluminum alloy to Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des. 2013;51:544–551. doi: 10.1016/j.matdes.2013.04.057
  • Park K. Development and analysis of ultrasonic assisted friction stir welding process [PhD thesis]. University of Michigan; 2009.
  • Amini S, Amiri MR. Study of ultrasonic vibration effects of friction stir welding. Int J Adv Manufact Technol. 2014;73:127–135. doi: 10.1007/s00170-014-5806-7
  • Lapilli G, Wise B, Gutierrez H, et al. Characterisation of elastomeric diaphragm motion with a spacecraft tank during ground operation. 51st AIAA/ASME/SAE/ASEE Joint Propulsion conference, 2015; Orlando, Florida.
  • Wu A, Song Z, Nakata K, et al.: Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminium alloy 6061. J Mater Des. 2015;71:85–92. doi: 10.1016/j.matdes.2014.12.015
  • Edison Welding Institute. 2014 [cited 2015 Oct]. Modelling the electron beam welding of intermediate pressure compressor drums. Rolls-Royce. Available from: http://ewi.org/eto/wp-content/uploads/2014/10/12-Beech-2014-Seattle-EB-Welding.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.