442
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

High resolution imaging of martensitic all-weld metal

, &
Pages 336-342 | Received 11 Aug 2016, Accepted 21 Sep 2016, Published online: 15 Nov 2016

References

  • Bhadeshia HKDH. Bainite in steels. 3rd edn. Cambridge: Institute of Materials; 2001.
  • Grong O, Matlock DK. Microstructural development in mild and low-alloy steel weld metals. Int Met Rev. 1986;31:27–48. doi: 10.1179/imtr.1986.31.1.27.
  • Farrar RA, Harrison PL. Acicular ferrite in carbon-manganese weld metals: An overview. J Mater Sci. 1987;22:3812–3820. doi: 10.1007/BF01133327.
  • Abson DJ. Non-metallic inclusions in ferritic steel weld metals – a review. Weld World, Le Soudage Dans Le Monde. 1989;27:76–101.
  • Sugden A, Bhadeshia H. Lower acicular ferrite. Metall Trans A. 1989;20:1811–1818. doi: 10.1007/BF02663212
  • Babu SS, Bhadeshia HKDH. Mechanism for the transition from bainite to acicular ferrite. Mater Trans. 1991;32:679–688. doi: 10.2320/matertrans1989.32.679
  • Evans GM. Microstructure and properties of ferritic steel welds containing Al and Ti. Weld J. 1995;74:249s–261s.
  • Evans GM. Effect of nitrogen on C-Mn steel welds containing titanium and boron. Weld J. 1998;77:239–248.
  • Blais C, L’Espérance G, Evans G. Characterisation of inclusions found in C–Mn steel welds containing titanium. Sci Technol Weld Join. 1999;4:143–150. doi: 10.1179/136217199101537680
  • Seo JS, Seo K, Kim HJ, et al. Effect of titanium content on weld microstructure and mechanical properties of bainitic GMA welds. Weld World. 2014;58:893–901. doi: 10.1007/s40194-014-0168-1.
  • Keehan E, Zachrisson J, Karlsson L. Influence of cooling rate on microstructure and properties of high strength steel weld metal. Sci Technol. 2010;15:233–238. doi: 10.1179/136217110X12665048207692.
  • Vanovsek W, Bernhard C, Fiedler M, et al. Influence of aluminum content on the characterization of microstructure and inclusions in high-strength steel welds. Weld World. 2013;57:73–83. doi: 10.1007/s40194-012-0008-0.
  • Vanovsek W, Bernhard C, Fiedler M, et al. Effect of titanium on the solidification and postsolidification microstructure of high-strength steel welds. Weld World. 2013;57:665–674. doi: 10.1007/s40194-013-0063-1.
  • Sumi H, Oi K, Yasuda K. Effect of chemical composition on microstructure and mechanical properties of laser weld metal of high-tensile-strength steel. Weld World. 2015;59:173–178. doi: 10.1007/s40194-014-0191-2.
  • Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003;51:1789–1799. doi: 10.1016/j.actamat.2006.07.009. doi: 10.1016/S1359-6454(02)00577-3
  • Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006;54:1279–1288. doi: 10.1016/j.actamat.2005.11.001.
  • Morito S, Adachi Y, Ohba T. Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel. Mater Trans. 2009;50:1919–1923. doi: 10.2320/matertrans.MRA2008409.
  • Kim HJ, Kim YH, Morris JW. Thermal mechanisms of grain and packet refinement in a lath martensitic steel. ISIJ Int. 1998;38:1277–1285. doi: 10.2355/isijinternational.38.1277.
  • Kim M-C, Jun Oh Y, Hwa Hong J. Characterization of boundaries and determination of effective grain size in Mn-Mo-Ni low alloy steel from the view of misorientation. Scr Mater. 2000;43:205–211. doi: 10.1016/S1359-6462(00)00392-4.
  • Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels. Mater Sci Eng A. 2006;438–440:237–240. doi: 10.1016/j.msea.2005.12.048.
  • Wang C, Wang M, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel. J Mater Sci Technol. 2007;23:659–664.
  • Du C, Hoefnagels JPM, Vaes R, et al. Block and sub-block boundary strengthening in lath martensite. Scr Mater. 2016;116:117–121. doi: 10.1016/j.scriptamat.2016.01.043.
  • Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. A model for the microstructure behaviour and strength evolution in lath martensite. Acta Mater. 2015;98:81–93. doi: 10.1016/j.actamat.2015.07.018.
  • Miller MK, Beaven PA, Smith GDW. A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy. Metall Trans A. 1981;12:1197–1204. doi: 10.1007/BF02642333.
  • Thomson RC, Miller MK. The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels. Appl Surf Sci. 1995;87–88:185–193. doi: 10.1016/0169-4332(94)00496-X
  • Zhu C, Cerezo A, Smith GDW. Carbide characterization in low-temperature tempered steels. Ultramicroscopy. 2009;109:545–552. doi: 10.1016/j.ultramic.2008.12.007.
  • Lerchbacher C, Zinner S, Leitner H. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1. Micron. 2012;43:818–826. doi: 10.1016/j.micron.2012.02.005.
  • Wilde J, Cerezo A, Smith GDW. Three-dimensional atomic-scale mapping of a Cottrell atmosphere around a dislocation in iron. Scr Mater. 2000;43:39–48. doi: 10.1016/S1359-6462(00)00361-4.
  • Joshi A, Palmberg PW, Stein DF. Role of Mn and Si in temper embrittlement of low alloy steels. Metall Trans A. 1975;6:2160–2161. doi: 10.1007/BF03161846
  • Smith JF, Reynolds JH, Southworth HN. The role of Mn in the temper embrittlement of a 3.5 NiCrMoV steel. Acta Metall. 1980;28:1555–1564. doi: 10.1016/0001-6160(80)90057-7
  • Yu J, McMahon J. The effects of composition and carbide precipitation on temper embrittlement of 2.25Cr-1Mo steel: Part II. Effects of Mn and Si. Metall Trans A. 1980;11:291–300. doi: 10.1007/BF02660633
  • Bodnar RL, Ohhashi T, Jaffee RI. Effects of Mn Si and Purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels. Metall Trans A. 1989;20:1445–1460. doi: 10.1007/BF02665502
  • Heo NH, Nam JW, Heo Y, et al. Grain boundary embrittlement by Mn and eutectoid reaction in binary Fe – 12Mn steel. Acta Mater. 2013;61:4022–4034. doi: 10.1016/j.actamat.2013.03.016.
  • Gladman T. The physical metallurgy of microalloyed steels. London: The Institute of Materials; 1997.
  • Craven AJ, MacKenzie M, Cerezo A, et al. Spectrum imaging and three-dimensional atom probe studies of fine particles in a vanadium micro-alloyed steel. Mater Sci Technol. 2008;24:641–650. doi: 10.1179/174328408X270347.
  • Xie KY, Zheng T, Cairney JM, et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel. Scr Mater. 2012;66:710–713. doi: 10.1016/j.scriptamat.2012.01.029.
  • Isheim D, Kolli RP, Fine ME, et al. An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scr Mater. 2006;55:35–40. doi: 10.1016/j.scriptamat.2006.02.040.
  • Miller MK, Russell KF. Embrittlement of RPV steels: an atom probe tomography perspective. J Nucl Mater. 2007;371:145–160. doi: 10.1016/j.jnucmat.2007.05.003.
  • Wang H, Yu X, Isheim D, et al. High strength weld metal design through nanoscale copper precipitation. Mater Des. 2013;50:962–967. doi: 10.1016/j.matdes.2013.03.093.
  • LePera FS. Improved etching technique to emphasize martensite and bainite in high-strength dual-phase steel. JOM. 1980;32:38–39. doi: 10.1007/BF03354553.
  • Humphreys FJ. Grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci. 2001;36:3833–3854. doi: 10.1023/A:1017973432592.
  • Miller MK, Cerezo A, Hetherington MG, et al. Atom probe field ion microscopy. Oxford: Clarendon Press; 1996.
  • Kelly TF, Miller MK. Invited review article: atom probe tomography. Rev Sci Instrum. 2007;78:1–20. doi: 10.1063/1.2709758.
  • Miller MK, Forbes RG. Atom probe tomography. Mater Charact. 2009;60:461–469. doi: 10.1016/j.matchar.2009.02.007.
  • Gourgues A-F, Flower HM, Lindley TC. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater Sci Technol. 2000;16:26–40. doi: 10.1179/026708300773002636.
  • Caballero FG, Miller MK, Clarke AJ, et al. Examination of carbon partitioning into austenite during tempering of bainite. Scr Mater. 2010;63:442–445. doi: 10.1016/j.scriptamat.2010.04.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.