855
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Progress in friction stir welding of Ni alloys

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 643-657 | Received 03 Oct 2016, Accepted 22 Jan 2017, Published online: 24 Feb 2017

References

  • Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propul Power. 2006;22(2):361–374. doi: 10.2514/1.18239
  • Henriques CCD, Joia CJBM, Baptista IP, et al. Material selection for Brazilian Presalt fields. Proceedings of The Offshore Technology Conference, Society of Petroleum Engineers, Richardson, TX; 2012.
  • Lemos GVB, Simoni L, Bergmann L, et al. Caracterização Preliminar da Microestrutura em Cordões de Solda da liga 625 produzidos através dos processos de SFMM e MIG. XLI Congresso Nacional De Soldagem, Salvador – Bahia; 2015.
  • Avery RE, Tuthill AH. Guidelines forwelded fabrication of nickel alloys for corrosion resistant service. A nickel development institute. Reference Book series no. 11 012; 1994.
  • Sorensen, CD, Nelson TW. Friction stir welding of ferrous and nickel alloys. In: Mishra RS, Mahoney MW, editors. Friction stir welding and processing. Vol. 6. Materials Park (OH): ASM International; 2007. p. 111–121.
  • Lemos GVB, Farina AB, Martinazzi D, et al. Efeito Da Velocidade De Rotação Da Ferramenta Na Soldagem Por Fricção E Mistura Mecânica Da Liga Inconel 625. In: 71° Congresso Anual ABM, 2016, Rio de Janeiro. ABM Week 2016; 2016.
  • Davis JR, editor. Corrosion of weldments. Materials Park (OH): ASM International; 2006.
  • Thomas WM, Nicholas ED, Needham JC, et al. Friction-stir butt welding, GB Patent No. 9125978.8, International patent application No. PCT/GB92/02203, 1991.
  • Liu S, Bor TC, Geijselaers HJM, et al. Parameter study for friction surface cladding of AA1050 on AA2024-T351; 2016.
  • Liu S, Bor TC, Van der Stelt AA, et al. Friction surface cladding: an exploratory study of a new solid state cladding process. J Mater Process Technol. 2016;229:769–784. doi: 10.1016/j.jmatprotec.2015.10.029
  • Rebak RB. Environmentally assisted cracking of nickel alloys – a review. Proceedings of the Second International Conference on Environment-Induced Cracking of Metals (EICM-2), Banff, Alberta, Canada; 2004.
  • Williams JC, Starke, EA. Progress in structural materials for aerospace systems. Acta Mater. 2003;51(19):5775–5799. doi: 10.1016/j.actamat.2003.08.023
  • Kappmeyer G, Hubig C, Hardy M, et al. Modern machining of advanced aerospace alloys-enabler for quality and performance. Procedia CIRP. 2012;1:28–43. doi: 10.1016/j.procir.2012.04.005
  • Smith RJ, Lewi GJ, Yates DH. Development and application of nickel alloys in aerospace engineering. Aircraft Eng Aerospace Technol. 2001;73(2):138–147. doi: 10.1108/00022660110694995
  • David SA, Siefert JA, DuPont JN, et al. Weldability and weld performance of candidate nickel base superalloys for advanced ultrasupercritical fossil power plants part I: fundamentals. Sci Technol Weld Join. 2015;20(7):532–552. doi: 10.1179/1362171815Y.0000000035
  • Donachie MJ, Donachie S. Superalloys: a technical guide. Materials Park (OH): ASM international; 2002.
  • Milosavljevic A, Petronic S, Polic-Radovanovic S, et al. The influence of the heat-treatment regime on a fracture surface of nickel-based supperalloys. Mater Tehnol. 2012;46(4):411–417.
  • Lampman S. Weld integrity and performance: a source book adapted from ASM international handbooks, conference proceedings, and technical books. Materials Park (OH): ASM International; 1997. p. v, 417 pp.
  • Reed, Roger C. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2006.
  • Sathian S. Metallurgical and mechanical properties of Ni-based superalloy friction welds. Toronto: University of Toronto; 1999.
  • Standard Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Plate, Sheet, and Strip.
  • Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219)* Plate, Sheet, and Strip.
  • Standard Specification for Precipitation-Hardening and Cold Worked Nickel Alloy Bars, Forgings, and Forging Stock for Moderate or High Temperature Service.
  • Ezugwu EO, Wang ZM, Machado AR. The machinability of nickel-based alloys: a review. J Mater Process Tech. 1999;86(1–3):1–16. doi: 10.1016/S0924-0136(98)00314-8
  • Special Metals Corporation, INCONEL® Alloy 600, SMC-027. 2008. Available from: http://www.specialmetals.com/products/inconelalloy600.php
  • Special Metals Corporation, INCONEL® Alloy 625, SMC-063. 2006. Available from: http://www.specialmetals.com/products/inconelalloy625.php
  • Special Metals Corporation, INCONEL® Alloy 718, SMC-045. 2007. Available from: http://www.specialmetals.com/products/inconelalloy718.php
  • Floreen S, Fuchs GE, Yang WJ. The metallurgy of alloy-625. Superalloys 718, 625, 706 and various derivatives. 1994;13–37.
  • Song KH, Nakata K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding. Mater Design. 2010;31(6):2942–2947. doi: 10.1016/j.matdes.2009.12.020
  • Song KH, Nakata K. Microstructural and mechanical properties of friction-stir-welded and post-heat-treated inconel 718 alloy. J Alloy Compd. 2010;505(1):144–150. doi: 10.1016/j.jallcom.2010.06.016
  • Shankar V, Rao KBS, Mannan SL. Microstructure and mechanical properties of Inconel 625 superalloy. 2001;288:222–232.
  • Sundararaman M, Lalit Kumar, G. Eswara Prasad P, et al. Precipitation of an intermetallic phase with Pt2Mo-type structure in alloy 625. Metall Mater Trans A. 1999;30 1:41–52. doi: 10.1007/s11661-999-0194-6
  • Farina, AB. Efeito do teor de ferro e do tratamento térmico na microestrutura e propriedades da liga UNS N06625./A.B. Farina – São Paulo, 2014. 123 p. Tese (Doutorado) – Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Metalúrgica e de Materiais.
  • Eiselstein LH, Gadbut J. Matrix-stiffened alloy. US 3,160,500 United States, 8th December of 1964. Patent Application.
  • Eiselstein HL, e Tillack, DJ. The invention and definition of alloy 625. Alloy 718, 625 and various derivatives. s.l.: the minerals. Metals Mater Soc. 1991;1–14.
  • Seiser B, Drautz R, Pettifor DG. Tcp phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater. 2011;59(2):749–763. doi: 10.1016/j.actamat.2010.10.013
  • Suave LM, Cormier J, Villechaise P, et al. Microstructural evolutions during thermal aging of alloy 625: impact of temperature and forming process. Metall Mater Trans A. 2014;45(7): 2963–2982. doi: 10.1007/s11661-014-2256-7
  • Sundararaman M, Mukhopadhyay P, Banerjee S. Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties. In: Superalloys 718, 625, 706 and various derivatives; 1997.
  • Raghavan M, Mueller RP, Klein CF, et al. Carbides in Ni-Cr-Mo system. Scrinta Metall. 1983;17:1189–1194. doi: 10.1016/0036-9748(83)90281-8
  • Song KH, Nakata K. Mechanical properties of friction-stir-welded Inconel 625 alloy. Mater Trans. 2009;50(10):2498–2501. doi: 10.2320/matertrans.M2009200
  • The Welding Institute (TWI), Friction Stir Welding (FSW). Available from: http://www.twi-global.com/technologies/welding-surface-engineering-and-material-processing/friction-stir-welding/TWI
  • Cam G. Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev. 2011;56(1):1–48. doi: 10.1179/095066010X12777205875750
  • Song KH, Tsumura T, Nakata K. Development of microstructure and mechanical properties in laser-FSW hybrid welded Inconel 600. Mater Trans. 2009;50(7):1832–1837. doi: 10.2320/matertrans.M2009058
  • David SA, Feng Z. Friction stir welding of advanced materials: challenges. Oak Ridge (TN): Metals and Ceramics Division, Oak Ridge National Laboratory; 2004.
  • Rai R, De A, Bhadeshia HKDH, et al. Review: friction stir welding tools. Sci Technol Weld Join. 2011;16(4):325–342. doi: 10.1179/1362171811Y.0000000023
  • Dawes CJ, Thomas WM. Friction stir process welds aluminum alloys. Weld J. 1996;75(3):41–45.
  • Nicholas ED, Thomas WM. A review of friction processes for aerospace applications. Int J Mater Prod Technol. 1998;13(1–2):45–55.
  • Thomas WM, Threadgill PL, Nicholas ED. Feasibility of friction stir welding steel. Sci Technol Weld Join. 1999;4(6):365–372. doi: 10.1179/136217199101538012
  • Thomas WM. Friction stir welding – recent developments. Mater Sci Forum. 2003;426–432:229–236. doi: 10.4028/www.scientific.net/MSF.426-432.229
  • Kumar K, Kailas SV, Srivatsan TS. Influence of tool geometry in friction stir welding. Mater Manuf Process. 2008;23(2):189–195. doi: 10.1080/10426910701774734
  • Hattingh DG, Blignault C, van Niekerk TI, et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. J Mater Process Technol. 2008;203(1–3):46–57. doi: 10.1016/j.jmatprotec.2007.10.028
  • Nandan R, DebRoy T, Bhadeshia H. Recent advances in friction-stir welding – process, weldment structure and properties. Prog. Mater Sci. 2008;53(6):980–1023. doi: 10.1016/j.pmatsci.2008.05.001
  • Mishra RS, Mahoney MW. Friction stir welding and processing. Materials Park (OH): ASM International; 2007. p. vi, 360 pp.
  • Prado RA, Murr LE, Shindo DJ, et al. Tool wear in the friction-stir welding of aluminum alloy 6061 + 20% Al2O3: a preliminary study. Scr Mater. 2001;45(1):75–80. doi: 10.1016/S1359-6462(01)00994-0
  • Raffo PL. Yielding and fracture in tungsten and tungsten-rhenium alloys. J Less-Common Met. 1969;7(2):133–149. doi: 10.1016/0022-5088(69)90047-2
  • Thompson B, Babu SS. Tool degradation characterization in the friction stir welding of hard metals. Weld J. 2010;89(12):256s–261s.
  • Miyazawa T, Iwamoto Y, Maruko T, et al. Development of high strength Ir based alloy tool for friction stir welding. Sci Technol Weld Join. 2012;17(3):213–218. doi: 10.1179/1362171811Y.0000000097
  • Russell AM, Lee KL. Structure-property relations in nonferrous metals. Hoboken (NJ): John Wiley; 2005. p. xiii, 499 pp.
  • Selvam S, Pillai TP. Comparison of heavy alloy tool in friction stir welding. Int J Eng Sci Technol. 2012;4(12):4788–4797.
  • Jasthi BK, Arbegast WJ, Howard SM. Thermal expansion coefficient and mechanical properties of friction stir welded invar (Fe-36%Ni). J Mater Eng Perform. 2009;18(7):925–934. doi: 10.1007/s11665-008-9320-7
  • Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten-rhenium alloys. Int J Refract Met H. 2010;28(6):692–697. doi: 10.1016/j.ijrmhm.2010.03.002
  • Mandel K, Kruger L, Krause R, et al. The influence of stress state on the compressive strength of WC-Co with different Co contents. Int J Refract Met H. 2014;47:124–130. doi: 10.1016/j.ijrmhm.2014.07.011
  • Feng Z, Santella M, David S, et al. Friction stir spot welding of advanced high-strength steels-A feasibility study. SAE Tech Paper; 2005.
  • Meran C, Kovan V, Alptekin A. Friction stir welding of AISI 304 austenitic stainless steel. Materialwiss Werkst. 2007;38(10):829–835. doi: 10.1002/mawe.200700214
  • Sato YS, Arkom P, Kokawa H, et al. Effect of microstructure on properties of friction stir welded Inconel alloy 600. Mat Sci Eng a-Struct. 2008;477(1–2):250–258. doi: 10.1016/j.msea.2007.07.002
  • Ye F, Fujii H, Tsumura T, et al. Friction stir welding of Inconel alloy 600. J Mater Sci. 2006;41(16):5376–5379. doi: 10.1007/s10853-006-0169-6
  • Song KH, Fujii H, Nakata K. Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600. Mater Design. 2009;30(10):3972–3978. doi: 10.1016/j.matdes.2009.05.033
  • Song KH, Kim WY, Nakata K. Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400. Mater Design. 2012;35:126–132. doi: 10.1016/j.matdes.2011.09.054
  • Ahmed MMZ, Wynne BP, Martin JP. Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718. Sci Technol Weld Join. 2013;18(8):680–687. doi: 10.1179/1362171813Y.0000000156
  • Threadgill PL, Leonard AJ, Shercliff HR, et al. Friction stir welding of aluminium alloys. Int Mater Rev. 2009;54(2):49–93. doi: 10.1179/174328009X411136
  • Rao D, Huber K, Heerens J, et al. Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints. Mater Sci Eng: A. 2013;565:44–50. doi: 10.1016/j.msea.2012.12.014
  • DuPont JN, Lippold JC, Samuel DK. Welding metallurgy and weldability of nickel-base alloys. Hoboken (NJ): John Wiley and Sons Ltd.; 2009. 456 p.
  • Lohwasser D, Chen Z, editors. Friction stir welding: from basics to applications. Oxford: Elsevier; 2009.
  • Podrzaj P, Jerman B, Klobcar D. Welding defects at friction stir welding. Metalurgija. 2015;54(2):387–389.
  • www.twi-global.com/technical-knowledge/job-knowledge/defects-imperfections-in-welds-porosity-042/
  • Kurt A, Uygur I, Ates H. Effect of porosity content on the weldability of powder metal parts produced by friction stir welding. Mater Sci Forum. 2007;534–536:789–792. doi: 10.4028/www.scientific.net/MSF.534-536.789
  • Murr LE, Flores RD, Flores OV, et al. Friction-stir welding: microstructural characterization. Mater Res Innov. 1998;1(4):211–223. doi: 10.1007/s100190050043
  • Goodfellow CJ, Leonard AJ. Unpublished work. Birmingham: TWI and Birmingham University; 2003.
  • Johnson R. Further assessment of the friction stir welding of magnesium alloys. TWI members report no. 766/2003, Abington: TWI; 2003.
  • Crook P. Corrosion resistant nickel alloys – Part 1. Adv Mater Process. 2007;165(6):37–39.
  • McCoy SA, Hereford UK, Puckett BC, et al. High performance age-hardenable nickel alloys solve problems in sour oil and gas service. Balance. 2002;14:1–8.
  • ASTM G-48, Method C. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution. West Conshohocken (PA): ASTM International; 2015.
  • Lemos GVB, Martinazzi D, Meinhardt CP, et al. Avaliação Da Resistência À Corrosão Em Juntas Soldadas De Ligas Resistentes A Corrosão (CRA) Produzidas Através Da Soldagem Por Fricção E Mistura Mecânica. In: 22° Cbecimat – Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal; 2016.
  • Bassiouni M, Ward LP, Raman RS, et al. Studies on the degree of sensitization of welded 2507 super duplex stainless steel using a modified DL-EPR test procedure. In Proceedings of Corrosion and Prevention Conference; 2010. p. 1–12.
  • Martinazzi D, Lemos GVB, Brancher JC, et al. Avaliação Da Resistência A Corrosão De Uma Junta Soldada De Inconel® 625 Obtida Através Da Soldagem Por Fricção E Mistura Mecânica. In: 22° Cbecimat – Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal; 2016.
  • ASTM G108. Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels. West Conshohocken (PA): ASTM International; 2015.
  • Prohaska M, Wernig T, Mori G, et al. Possibilities and limitations of replacing a conventional corrosion test with an electrochemical potentiokinetic reactivation method using the example of alloy 625. EuroCorr (Nizza, France, 06-10 September 2009), paper 7901 (2009): 1–13.
  • Lackner R, Mori G, Egger R, et al. Sensitization of as rolled and stable annealed alloy 625. Berg- und hüttenmännische Monatshefte: BHM. 2014;158:12–22. doi: 10.1007/s00501-013-0225-x
  • ASTM G28 – Method A: Standard test methods for detecting susceptibility to intergranular corrosion in wrought, nickel-rich, chromium-bearing alloys. West Conshohocken (PA): ASTM International; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.