807
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Friction-stir lap-joining of aluminium-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study

, &
Pages 35-49 | Received 22 Feb 2017, Accepted 20 Apr 2017, Published online: 08 May 2017

References

  • Oliveira PHF, Amancio-Filho ST, dos Santos JF, et al. Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett. 2010;64:2098–2101. doi: 10.1016/j.matlet.2010.06.050
  • Cole GS, Sherman AM. Light weight materials for automotive applications. Mater Charact. 1995;35:3–9. doi: 10.1016/1044-5803(95)00063-1
  • Amancio-Filho ST, dos Santos JF. Joining of polymers and polymer–metal hybrid structures: recent developments and trends. Polym Eng Sci. 2009;49:1461–1476. doi: 10.1002/pen.21424
  • Bilici MK, Yükler Aİ, Kurtulmuş M. The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater Des. 2011;32:4074–4079. doi: 10.1016/j.matdes.2011.03.014
  • Grujicic M, Sellappan V, Omar MA, et al. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J Mater Process Technol. 2008;197:363–373. doi: 10.1016/j.jmatprotec.2007.06.058
  • Bergmann JP, Stambke M. Potential of laser-manufactured polymer-metal hybrid joints. Phys Procedia. 2012;39:84–91. doi: 10.1016/j.phpro.2012.10.017
  • Mackwood AP, Crafer RC. Thermal modelling of laser welding and related processes: a literature review. Opt Laser Technol. 2005;37:99–115. doi: 10.1016/j.optlastec.2004.02.017
  • Matheny MP, Graff KF. 11 – Ultrasonic welding of metals. In: Gallego-Juárez JA, Graff KF, editors. Power ultrasonics. Oxford: Woodhead Publishing; 2015. p. 259–293.
  • Yan P, Güngör ÖE, Thibaux P, et al. Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment. Mater Sci Eng A. 2011;528:8492–8499. doi: 10.1016/j.msea.2011.07.034
  • Min J, Li Y, Li J, et al. Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets. Int J Adv Manuf Technol. 2015;76:1403–1410. doi: 10.1007/s00170-014-6364-8
  • Gao X, Liu Y, Lan C, et al. Laser-induced infrared characteristic analysis for evaluating joint deviation during austenitic stainless steel laser welding. Int J Adv Manuf Technol. 2017;88:1877–1888. doi: 10.1007/s00170-016-8892-x
  • Al-Sanea SA. Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection. Int J Heat Mass Transf. 2004;47:1445–1465. doi: 10.1016/j.ijheatmasstransfer.2003.09.016
  • He X, Gu F, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66. doi: 10.1016/j.pmatsci.2014.03.003
  • Abibe AB, Amancio-Filho ST, dos Santos JF, et al. Mechanical and failure behaviour of hybrid polymer–metal staked joints. Mater Des. 2013;46:338–347. doi: 10.1016/j.matdes.2012.10.043
  • Blaga L, Bancilă R, dos Santos JF, et al. Friction riveting of glass-fibre-reinforced polyetherimide composite and titanium grade 2 hybrid joints. Mater Des. 2013;50:825–829. doi: 10.1016/j.matdes.2013.03.061
  • Balle F, Wagner G, Eifler D. Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer – joints. Materialwiss Werkstofftech. 2007;38:934–938. doi: 10.1002/mawe.200700212
  • Balle F, Wagner G, Eifler D. Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites. Adv Eng Mater. 2009;11:35–39. doi: 10.1002/adem.200800271
  • Balle F, Eifler D. Statistical test planning for ultrasonic welding of dissimilar materials using the example of aluminum-carbon fiber reinforced polymers (CFRP) joints. Materwiss Werksttech. 2012;43:286–292. doi: 10.1002/mawe.201200943
  • Goushegir SM, dos Santos JF, Amancio-Filho ST. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des. 2014;54:196–206. doi: 10.1016/j.matdes.2013.08.034
  • Goushegir SM, dos Santos JF, Amancio-Filho ST. Influence of process parameters on mechanical performance and bonding area of AA2024/carbon-fiber-reinforced poly(phenylene sulfide) friction spot single lap joints. Mater Des. 2015;83:431–442. doi: 10.1016/j.matdes.2015.06.044
  • Mitschang P, Velthuis R, Didi M. Induction spot welding of metal/CFRPC hybrid joints. Adv Eng Mater. 2013;15:804–813. doi: 10.1002/adem.201200273
  • Khodabakhshi F, Haghshenas M, Chen J, et al. Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci Technol Weld Join. 2017;22:182–190. doi: 10.1080/13621718.2016.1211583
  • Khodabakhshi F, Haghshenas M, Sahraeinejad S, et al. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Mater Charact. 2014;98:73–82. doi: 10.1016/j.matchar.2014.10.013
  • Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, et al. Friction stir welding of a P/M Al–Al2O3 nanocomposite: microstructure and mechanical properties. Mater Sci Eng A. 2013;585:222–232. doi: 10.1016/j.msea.2013.07.062
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. doi: 10.1016/j.mser.2005.07.001
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng A. 2015;620:471–482. doi: 10.1016/j.msea.2014.10.048
  • Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction-stir welding – process, weldment structure and properties. Prog Mater Sci. 2008;53:980–1023. doi: 10.1016/j.pmatsci.2008.05.001
  • Amancio-Filho ST, Bueno C, dos Santos JF, et al. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater Sci Eng A. 2011;528:3841–3848. doi: 10.1016/j.msea.2011.01.085
  • Yusof F, Miyashita Y, Seo N, et al. Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate. Sci Technol Weld Join. 2012;17:544–549. doi: 10.1179/136217112x13408696326530
  • Liu FC, Nakata K, Liao J, et al. Reducing bubbles in friction lap welded joint of magnesium alloy and polyamide. Sci Technol Weld Join. 2014;19:578–587. doi: 10.1179/1362171814Y.0000000228
  • Ratanathavorn W, Melander A. Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci Technol Weld Join. 2015;20:222–228. doi: 10.1179/1362171814Y.0000000276
  • Shahmiri H, Movahedi M, Kokabi AH. Friction stir lap joining of aluminium alloy to polypropylene sheets. Sci Technol Weld Join. 2017;22:120–126. doi: 10.1080/13621718.2016.1204171
  • Jamshidi Aval H, Serajzadeh S, Kokabi AH, et al. Effect of tool geometry on mechanical and microstructural behaviours in dissimilar friction stir welding of AA 5086-AA 6061. Sci Technol Weld Join. 2011;16:597–604. doi: 10.1179/1362171811Y.0000000044
  • Nandan R, Roy GG, Lienert TJ, et al. Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 2007;55:883–895. doi: 10.1016/j.actamat.2006.09.009
  • Arora A, Nandan R, Reynolds AP, et al. Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr Mater. 2009;60:13–16. doi: 10.1016/j.scriptamat.2008.08.015
  • Zhu X, Chao Y. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol. 2004;146:263–272. doi: 10.1016/j.jmatprotec.2003.10.025
  • Zhang Z, Chen JT, Zhang ZW, et al. Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses. J Mater Sci. 2011;46:5815–5821. doi: 10.1007/s10853-011-5537-1
  • Abibe AB, Sônego M, dos Santos JF, et al. On the feasibility of a friction-based staking joining method for polymer–metal hybrid structures. Mater Des. 2016;92:632–642. doi: 10.1016/j.matdes.2015.12.087
  • Zhang J, Shen Y, Li B, et al. Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. Mater Des. 2014;60:94–101. doi: 10.1016/j.matdes.2014.03.043
  • Smithells metals reference book. 8th ed. Gale WF, Totemeier TC, editors. Oxford: Elsevier Inc.; 2004.
  • Arora A. Thermomechanical conditions and stresses on the friction stir welding tool [Phd thesis]. The Pennsylvania State University The Graduate School; 2011.
  • Nandan R. Computational modeling of heat transfer and visco-elastic flow in friction stir welding [Phd thesis]. The Pennsylvania State University; 2008.
  • Zhang Z, Wu Q. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding. J Mater Sci Technol. 2015;29:4121–4128.
  • Zhang Z, Zhang HW. Solid mechanics-based Eulerian model of friction stir welding. Int J Adv Manuf Technol. 2014;72:1647–1653. doi: 10.1007/s00170-014-5789-4
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Reactive friction stir processing of AA 5052–TiO2 nanocomposite: process–microstructure–mechanical characteristics. Mater Sci Technol. 2015;31:426–435. doi: 10.1179/1743284714Y.0000000573
  • Kumar AP, Raj R, Kailas SV. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater Des. 2015;85:626–634. doi: 10.1016/j.matdes.2015.07.054
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater Sci Eng A. 2015;642:215–229. doi: 10.1016/j.msea.2015.06.081
  • Simões F, Rodrigues DM. Material flow and thermo-mechanical conditions during friction stir welding of polymers: literature review, experimental results and empirical analysis. Mater Des. 2014;59:344–351. doi: 10.1016/j.matdes.2013.12.038
  • De Leon M, Shin HS. Material flow behaviours during friction stir spot welding of lightweight alloys using pin and pinless tools. Sci Technol Weld Join. 2016;21:140–146. doi: 10.1179/1362171815Y.0000000075
  • Derazkola HA, Aval HJ, Elyasi M. Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Sci Technol Weld Join. 2015;20:553–562. doi: 10.1179/1362171815Y.0000000038
  • Elyasi M, Derazkola HA, Hosseinzadeh M. Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture; 2016. DOI:10.1177/0954405416645986
  • Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties. Mater Sci Eng A. 2016;660:84–96. doi: 10.1016/j.msea.2016.02.081
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A. 2015;642:204–214. doi: 10.1016/j.msea.2015.07.001
  • Galvão I, Oliveira JC, Loureiro A, et al. Formation and distribution of brittle structures in friction stir welding of aluminium and copper: influence of process parameters. Sci Technol Weld Join. 2011;16:681–689. doi: 10.1179/1362171811Y.0000000057
  • Nishida T, Ogura T, Nishida H, et al. Formation of interfacial microstructure in a friction stir welded lap joint between aluminium alloy and stainless steel. Sci Technol Weld Join. 2014;19:609–616. doi: 10.1179/1362171814Y.0000000232
  • Vigueras DJ, de Renero CT, Inal OT. Explosive and impact welding: technical review. Mater Technol. 2007;22:200–204. doi: 10.1179/175355507X236740

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.