611
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Fatigue properties of friction stir welds of treated Al to carbon fibre-reinforced plastic

, , , , &
Pages 79-86 | Received 21 Mar 2017, Accepted 06 Jun 2017, Published online: 02 Jul 2017

References

  • Adam H. Carbon fibre in automotive applications. Mater Des. 1997;18(4–6):349–355. doi: 10.1016/S0261-3069(97)00076-9
  • Nishitani H, Noguchi H, Goto H, et al. Fatigue process in short carbon-fiber-reinforced thermoplastics. Trans Jpn Soc Mech Eng A. 1990;56(125):1044–1050. Japanese. doi: 10.1299/kikaia.56.1044
  • Tanaka K, Kanagawa Y, Murakami S. Study on evolution of internal damage in CFRP in fatigue process. J Soc Mater Sci. 1998;47(5):440–445. Japanese. doi: 10.2472/jsms.47.440
  • Rao M, Hazlett TH. A study of the mechanisms involved in friction welding of aluminum alloys. Weld J. 1970;49(4):181–188.
  • Duffin FD, Bahrani AS. Frictional behaviour of mild steel in friction welding. Wear. 1973;26:53–74. doi: 10.1016/0043-1648(73)90150-6
  • Ishibashi A, Ezoe S, Tanaka S. Studies on friction welding of carbon and alloy steels: 3rd report: adequate welding conditions for high alloy steels and distributions of alloy elements near weld interface. Bull JSME. 1983;26(216):1080–1087. doi: 10.1299/jsme1958.26.1080
  • Kimura M, Shirakami K, Kusaka M, et al. Joining phenomena and tensile strength of ABS resin friction welded joint. Trans Jpn Soc Mech Eng. 2014;80(815):1–6. Japanese.
  • Heurtier P, Jones MJ, Desrayaud C, et al. Mechanical and thermal modelling of friction stir welding. J Mater Process Technol. 2006;171:348–357. doi: 10.1016/j.jmatprotec.2005.07.014
  • Uematsu Y, Tokaji K, Shibata H, et al. Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminium alloys. Int J Fatigue. 2009;31:1443–1453. doi: 10.1016/j.ijfatigue.2009.06.015
  • Guo JF, Gougeon P, Chen XG. Characterisation of welded joints produced by FSW in AA 1100–B4C metal matrix composites. Sci Technol Weld Joining. 2012;17(2):85–91. doi: 10.1179/1362171811Y.0000000066
  • Park SHC, Sato YS, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scr Mater. 2003;49:161–166. doi: 10.1016/S1359-6462(03)00210-0
  • Zhang Y, Sato YS, Kokawa H, et al. Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Mater Sci Eng A. 2008;485:448–455. doi: 10.1016/j.msea.2007.08.051
  • Sun YF, Fujii H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A. 2010;527(26):6879–6886. doi: 10.1016/j.msea.2010.07.030
  • Cui L, Fujii H, Tsuji N, et al. Friction stir welding of a high carbon steel. Scr Mater. 2007;56:637–640. doi: 10.1016/j.scriptamat.2006.12.004
  • Joy-A-Ka S, Ogawa Y, Sugeta A, et al. Fatigue fracture mechanism on friction stir spot welded joints using 300 MPa-class automobile steel sheets under constant and variable force amplitude. Proc Mater Sci. 2014;3:537–543. doi: 10.1016/j.mspro.2014.06.089
  • Joy-A-Ka S, Ogawa Y, Akebono H, et al. Fatigue damage evaluation of friction stir spot welded cross-tension joints under repeated two-step force amplitudes. J Mater Eng Perform. 2015;24(6):2494–2502. doi: 10.1007/s11665-015-1534-x
  • Uzun H, Donne CD, Argagnotto A, et al. Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Mater Des. 2005;26:41–46. doi: 10.1016/j.matdes.2004.04.002
  • Khodabakhshi F, Haghshenas M, Sahraeinejad S, et al. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Mater Charact. 2014;98:73–82. doi: 10.1016/j.matchar.2014.10.013
  • Yusof F, Muhamad MR, Moshwan R, et al. Effect of surface states on joining mechanisms and mechanical properties of aluminum alloy (A5052) and polyethylene terephthalate (PET) by dissimilar friction spot welding. Metals. 2016;6(5):101. doi: 10.3390/met6050101
  • Liu FC, Liao J, Nakata K. Joining of metal to plastic using friction lap welding. Mater Des. 2014;54:236–244. doi: 10.1016/j.matdes.2013.08.056
  • Alvarez P, Janeiro G, da Silva AAM, et al. Material flow and mixing patterns during dissimilar FSW. Sci Tech Weld Join. 2010;15(8):648–653. doi: 10.1179/136217110X12785889549543
  • Ma ZY. Friction stir processing technology: a review. Metall Mater Trans A. 2008;39(3):42–658. doi: 10.1007/s11661-007-9459-0
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. doi: 10.1016/j.mser.2005.07.001
  • Hajian M, Abdollah-zadeh A, Rezaei-Nejad SS, et al. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Appl Sur Sci. 2014;308:184–192. doi: 10.1016/j.apsusc.2014.04.132
  • Shinoda T, Kawai M. Surface modification of aluminum alloy castings using plastic flow phenomenon. J Jpn Inst Light Metal. 2003;53(1):15–19. Japanese. doi: 10.2464/jilm.53.15
  • Saito N, Shigematsu I. Friction stir processing - A new technique for microstructure control of metallic materials. J Jpn Inst Light Metal. 2007;57(11):492–498. Japanese. doi: 10.2464/jilm.57.492
  • Junga KW, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fibre reinforced plastic to stainless steel. Sci Tech Weld Join. 2011;16(8):676–680. doi: 10.1179/1362171811Y.0000000060
  • Yusof F, Yukio M, Yoshiharu M, et al. Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052). Mater Des. 2012;37:410–415. doi: 10.1016/j.matdes.2012.01.006
  • Tan X, Zhang J, Shan J, et al. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel. Compos B Eng. 2015;70:35–43. doi: 10.1016/j.compositesb.2014.10.023
  • Franco GD, Fratini L, Pasta A. Influence of the distance between rivets in self-piercing riveting bonded joints made of carbon fiber panels and AA2024 blanks. Mater Des. 2012;35:342–349. doi: 10.1016/j.matdes.2011.09.036
  • Franco GD, Fratini L, Pasta A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks. Int J Adhes Adhes. 2013;41:24–32. doi: 10.1016/j.ijadhadh.2012.10.008
  • Rao H, Kang J, Huff G, et al. Impact of rivet head height on the tensile and fatigue properties of Lap shear self-pierced riveted CFRP to aluminum. SAE Int J Mater Manf. 2017;10(2):167–173. doi: 10.4271/2017-01-0477
  • Fawzia S, Al-Mahaidi R, Zhao XL. Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP. Compos Struct. 2006;75(1–4):156–162. doi: 10.1016/j.compstruct.2006.04.038
  • Wu W, Liu Q, Zong Z, et al. Experimental investigation into transverse crashworthiness of CFRP adhesively bonded joints in vehicle structure. Compos Struct. 2013;106:581–589. doi: 10.1016/j.compstruct.2013.07.009
  • Palmieri FL, Belcher MA, Wohl CJ, et al. Laser ablation surface preparation for adhesive bonding of carbon fiber reinforced epoxy composites. Int J Adhes Adhes. 2016;68:95–101. doi: 10.1016/j.ijadhadh.2016.02.007
  • Vural M, Akkuş A, Eryürek B. Effect of welding nugget diameter on the fatigue strength of the resistance spot welded joints of different steel sheets. J Mater Process Tech. 2006;176(1–3):127–132. doi: 10.1016/j.jmatprotec.2006.02.026
  • Tanegashima R, Akebono H, Kato M, et al. 3-Dimensional observation of the interior fracture mechanism and establishment of cumulative fatigue damage evaluation on spot welded joints using 590MPa-class steel. Int J Fatigue. 2013;51:121–131. doi: 10.1016/j.ijfatigue.2012.12.014
  • Tanegashima R, Ohara I, Akebono H, et al. Cumulative fatigue damage evaluations on spot-welded joints using 590 MPa-class automobile steel. Fatigue Fract Eng M. 2015;38(7):870–879. doi: 10.1111/ffe.12258
  • Tanegashima R, Akebono H, Sugeta A. Fatigue life estimation based on fracture mechanics of single spot welded joints under different loading modes. Eng Fract Mech. 2017;175:115–126. doi: 10.1016/j.engfracmech.2017.01.031
  • Hatamleh O, Lyons J, Forman R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints. Int J Fatigue. 2007;29:421–434. doi: 10.1016/j.ijfatigue.2006.05.007
  • Okada T, Uchida S, Nakata K. Effect of anodizing on direct joining property of aluminum alloy and plastic sheets by friction Lap joining. J Light Met Weld. 2015;53:298–306. Japanese.
  • Nagatsuka K, Tanaka H, Xiao B, et al. Effect of silane coupling treatment on the joint characteristics of friction lap joined Al alloy / CFRP. Q J Jpn Weld Soc. 2015;33(4):317–325. Japanese. doi: 10.2207/qjjws.33.317
  • Hasegawa S, Mimura T, Honkawa Y, et al. Resin bonding mechanism onto the KO treated surface. Furukawa-Sky Rev. 2013;9:64–67. Japanese.
  • Goushegir SM. Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures. Weld World. 2016;60:1073–1093. doi: 10.1007/s40194-016-0368-y
  • Ohtsu N. An automatic threshold selection method based on discriminant and least squares criteria. Trans Inf Syst D. 1980;J63(4):349–356. Japanese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.