569
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

An integrated model for analysing the effects of ultrasonic vibration on tool torque and thermal processes in friction stir welding

, &
Pages 365-379 | Received 25 Aug 2017, Accepted 29 Oct 2017, Published online: 10 Nov 2017

References

  • Threadgill PL, Leonard AJ, Shercliff HR, et al. Friction stir welding of aluminium alloys. Int Mater Rev. 2009;54:49–93. doi: 10.1179/174328009X411136
  • Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci. 2008;53:980–1023. doi: 10.1016/j.pmatsci.2008.05.001
  • Mishra R, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. doi: 10.1016/j.mser.2005.07.001
  • Nandan R, Roy GG, DebRoy T. Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans A. 2006;37:1247–1259. doi: 10.1007/s11661-006-1076-9
  • Cho HH, Hong ST, Roh JH, et al. Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Mater. 2013;61:2649–2661. doi: 10.1016/j.actamat.2013.01.045
  • Mehta M, Chatterjee K, De A. Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors. Sci Technol Weld Join. 2013;18:191–197. doi: 10.1179/1362171812Y.0000000084
  • Su H, Wu CS, Pittner A, et al. Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. J Manuf Process. 2013;15:495–500. doi: 10.1016/j.jmapro.2013.09.001
  • Rai R, De A, Bhadeshia HKDH, et al. Review: friction stir welding tools. Sci Technol Weld Join. 2011;16:325–342. doi: 10.1179/1362171811Y.0000000023
  • Padhy GK, Wu CS, Gao S. Auxiliary energy assisted friction stir welding – a status review. Sci Technol Weld Join. 2015;20:631–649. doi: 10.1179/1362171815Y.0000000048
  • Kohn G, Greenberg Y, Makover I, et al. Laser-assisted friction stir welding. Weld J. 2002;81:46–48.
  • Sun YF, Konishi Y, Kamai M, Fujii H. Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding. Mater Des. 2013;47:842–849. doi: 10.1016/j.matdes.2012.12.078
  • Yaduwanshi DK, Bag S, Pal S. Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials. Mater Des. 2016;92:166–183. doi: 10.1016/j.matdes.2015.12.039
  • Luo J, Chen W, Fu G. Hybrid-heat effects on electrical-current aided friction stir welding of steel, and Al and Mg alloys. J Mater Process Technol. 2014;214:3002–3012. doi: 10.1016/j.jmatprotec.2014.07.005
  • Santos TG, Miranda RM, Vilaça P. Friction stir welding assisted by electrical joule effect. J Mater Process Technol. 2014;214:2127–2133. doi: 10.1016/j.jmatprotec.2014.03.012
  • Liu X, Lan S, Ni J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol. 2015;219:112–123. doi: 10.1016/j.jmatprotec.2014.12.002
  • Sun YF, Shen JM, Morisada Y, et al. Spot friction stir welding of low carbon steel plates preheated by high frequency induction. Mater Des. 2014;54:450–457. doi: 10.1016/j.matdes.2013.08.071
  • Bang H, Bang H, Song H, et al. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6% Al–4% V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des. 2013;51:544–551. doi: 10.1016/j.matdes.2013.04.057
  • Padhy GK, Wu CS, Gao S, et al. Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration. Mater Des. 2016;92:710–723. doi: 10.1016/j.matdes.2015.12.094
  • Blaha F, Langenecker B. Ultrasonic investigation of the plasticity of metal crystals. Acta Metall. 1959;7:93–100. doi: 10.1016/0001-6160(59)90114-2
  • Dutta RK, Petrov RH, Delhez R, et al. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel. Acta Mater. 2013;61:1592–1602. doi: 10.1016/j.actamat.2012.11.036
  • Siddiq A, El Sayed T. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM. Mater Lett. 2011;65:356–359. doi: 10.1016/j.matlet.2010.10.031
  • Hung JC, Lin CC. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting. Mater Des. 2013;45:412–420. doi: 10.1016/j.matdes.2012.07.021
  • Kumar S, Wu CS, Padhy GK, et al. Application of ultrasonic vibrations in welding and metal processing: a status review. J Manuf Process. 2017;26:295–322. doi: 10.1016/j.jmapro.2017.02.027
  • Park K. Development and analysis of ultrasonic assisted friction stir welding process [Doctoral dissertation]. Ann Arbor (MI): The University of Michigan; 2009.
  • Amini S, Amiri M. Study of ultrasonic vibrations’ effect on friction stir welding. Int J Adv Manuf Technol. 2014;73:127–135. doi: 10.1007/s00170-014-5806-7
  • Rostamiyan Y, Seidanloo A, Sohrabpoor H, et al. Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Arch Civ Mech Eng. 2015;15:335–346. doi: 10.1016/j.acme.2014.06.005
  • Ma HK, He DQ, Liu JS. Ultrasonically assisted friction stir welding of aluminium alloy 6061. Sci Technol Weld Join. 2015;20:216–221. doi: 10.1179/1362171814Y.0000000275
  • Liu XC, Wu CS, Padhy GK. Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci Technol Weld Join. 2015;20:345–352. doi: 10.1179/1362171815Y.0000000021
  • Liu XC, Wu CS. Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Mater Des. 2016;90:350–358. doi: 10.1016/j.matdes.2015.10.131
  • Gao S, Wu CS, Padhy GK, et al. Evaluation of local strain distribution in ultrasonic enhanced Al 6061-T6 friction stir weld nugget by EBSD analysis. Mater Des. 2016;99:135–144. doi: 10.1016/j.matdes.2016.03.055
  • Shi L, Wu CS, Liu XC. Modeling the effects of ultrasonic vibration on friction stir welding. J Mater Process Technol. 2015;222:91–102. doi: 10.1016/j.jmatprotec.2015.03.002
  • Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf. 2003;43:605–615. doi: 10.1016/S0890-6955(03)00022-1
  • Hamilton C, Dymek S, Sommers A. A thermal model of friction stir welding in aluminum alloys. Int J Mach Tools Manuf. 2008;48:1120–1130. doi: 10.1016/j.ijmachtools.2008.02.001
  • Zhang XX, Xiao BL, Ma ZY. A transient thermal model for friction stir weld. Part I: the model. Metall Mater Trans A. 2011;42:3218–3228. doi: 10.1007/s11661-011-0729-5
  • Hoyos E, López D, Alvarez H. A phenomenologically based material flow model for friction stir welding. Mater Des. 2016;111:321–330. doi: 10.1016/j.matdes.2016.09.009
  • Hasan AF, Bennett CJ, Shipway PH. A numerical comparison of the flow behaviour in friction stir welding (FSW) using unworn and worn tool geometries. Mater Des. 2015;87:1037–1046. doi: 10.1016/j.matdes.2015.08.016
  • Zhang Z, Zhang HW. A fully coupled thermo-mecha-nical model of friction stir welding. Int J Adv Manuf Technol. 2008;37:279–293. doi: 10.1007/s00170-007-0971-6
  • Pashazadeh H, Teimournezhad J, Masoumi A. Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Mater Des. 2014;55:619–632. doi: 10.1016/j.matdes.2013.09.028
  • Zhu Y, Chen G, Chen Q, et al. Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction. Mater Des. 2016;108:400–410. doi: 10.1016/j.matdes.2016.06.119
  • He X, Gu F, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66. doi: 10.1016/j.pmatsci.2014.03.003
  • Lai RL, He DQ, Liu L, et al. A study of the temperature field during ultrasonic-assisted friction-stir welding. Int J Adv Manuf Technol. 2014;73:321–327. doi: 10.1007/s00170-014-5813-8
  • Shi L, Wu CS, Gao S, et al. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scr Mater. 2016;119:21–26. doi: 10.1016/j.scriptamat.2016.03.023
  • Shi L, Wu CS, Padhy GK, et al. Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater Des. 2016;104:102–115. doi: 10.1016/j.matdes.2016.05.001
  • Shi L, Wu CS, Liu HJ. Analysis of heat transfer and material flow in reverse dual-rotation friction stir welding. Weld World. 2015;59:629–638. doi: 10.1007/s40194-015-0238-z
  • Nandan R, Roy GG, DebRoy T. Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 2007;55:883–895. doi: 10.1016/j.actamat.2006.09.009
  • Shi L, Wu CS, Liu HJ. Modeling the material flow and heat transfer in reverse dual-rotation friction stir welding. J Mater Eng Perform. 2014;23:2918–2929. doi: 10.1007/s11665-014-1042-4
  • Sheppard T, Jackson A. Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys. Mater Sci Technol. 1997;13:203–209. doi: 10.1179/mst.1997.13.3.203
  • Colegrove PA, Shercliff HR, Zettler R. Model for predicting heat generation and temperature in friction stir welding from the material properties. Sci Technol Weld Join. 2007;12:284–297. doi: 10.1179/174329307X197539
  • Wang H, Colegrove PA, dos Santos JF. Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminum alloy. Comput Mater Sci. 2013;71:101–108. doi: 10.1016/j.commatsci.2013.01.021
  • Chen G, Shi Q, Li Y, et al. Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy. Comput Mater Sci. 2013;79:540–546. doi: 10.1016/j.commatsci.2013.07.004
  • Arora A, De A, DebRoy T. Toward optimum friction stir welding tool shoulder diameter. Scr Mater. 2011;64:9–12. doi: 10.1016/j.scriptamat.2010.08.052
  • Shi L, Wu CS, Liu HJ. The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int J Mach Tools Manuf. 2015;91:1–11. doi: 10.1016/j.ijmachtools.2015.01.004
  • Zhong YB, Wu CS, Padhy GK. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol. 2017;239:273–283. doi: 10.1016/j.jmatprotec.2016.08.025
  • Zhang J, Shen Y, Li B, et al. Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. Mater Des. 2014;60:94–101. doi: 10.1016/j.matdes.2014.03.043
  • Trimble D, Monaghan J, O’donnell GE. Force generation during friction stir welding of AA2024-T3. CIRP Annals-Manuf Technol. 2012;61:9–12. doi: 10.1016/j.cirp.2012.03.024
  • Shi L, Wu CS. Transient model of heat transfer and material flow at different stages of friction stir welding process. J Manuf Process. 2017;25:323–339. doi: 10.1016/j.jmapro.2016.11.008
  • Cui S, Chen ZW, Robson JD. A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir welding/processing. Int J Mach Tools Manuf. 2010;50:1023–1030. doi: 10.1016/j.ijmachtools.2010.09.005
  • Genevois C, Deschamps A, Denquin A, et al. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater. 2005;53:2447–2458. doi: 10.1016/j.actamat.2005.02.007
  • Zhang Z, Xiao BL, Ma ZY. Hardness recovery mechanism in the heat-affected zone during long-term natural aging and its influence on the mechanical properties and fracture behavior of friction stir welded 2024Al–T351 joints. Acta Mater. 2014;73:227–239. doi: 10.1016/j.actamat.2014.04.021
  • Zhang ZH, Li WY, Feng Y, et al. Global anisotropic response of friction stir welded 2024 aluminum sheets. Acta Mater. 2015;92:117–125. doi: 10.1016/j.actamat.2015.03.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.