161
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Formation of low angle boundaries and stray grains in welds of single-crystal Mo-3Nb alloys

ORCID Icon, , &
Pages 320-328 | Received 22 Sep 2019, Accepted 29 Nov 2019, Published online: 09 Dec 2019

References

  • Wen Z, Pingxiang Z, Xuanqiao G, et al. Nanoindentation size effect of molybdenum-niobium single crystals with different crystallographic orientations. Rare Metal Materials & Engineering, 2018.
  • Gupta YM, Mandal A. Elastic-plastic deformation of molybdenum single crystals shocked to 12.5 GPa: crystal anisotropy effects[C]// aps shock compression of condensed matter meeting. APS Shock Compression of Condensed Matter Meeting Abstracts, 2017.
  • Peng J, Litnovsky A, Kreter A, et al. Sputtering tests of single crystal molybdenum and rhodium mirrors at high ion fluence for, in situ, plasma cleaning of first mirrors in ITER. Fusion Eng Des. 2018;128:107–112. doi: 10.1016/j.fusengdes.2018.01.061
  • Nishimoto K, Saida K, Fujita Y. Crystal growth in laser surface melting and cladding of Ni-base single crystal superalloy. Weld World. 2008;52(5-6):64–78. doi: 10.1007/BF03266642
  • Napolitano RE, Schaefer RJ. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings. J Mater Sci. 2000;35(7):1641–1659. doi: 10.1023/A:1004747612160
  • Siredey N, Boufoussi M, Denis S, et al. Dendritic growth and crystalline quality of nickel-base single grains. J Cryst Growth. 1993;130(1–2):132–146. doi: 10.1016/0022-0248(93)90845-N
  • Bogdanowicz W, Albrecht R, Sieniawski J, et al. The subgrain structure in turbine blade roots of CMSX-4 superalloy. J Cryst Growth. 2014;401:418–422. doi: 10.1016/j.jcrysgro.2013.11.092
  • Dragnevski K, Mullis AM, Walker DJ, et al. Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts. Acta Mater. 2002;50(14):3743–3755. doi: 10.1016/S1359-6454(02)00186-6
  • Guinier A, Tennevin F. Researches on the polygonization of metals. Prog Metal Phys. 1950;2(4):177–192. doi: 10.1016/0502-8205(50)90009-8
  • Tin S, Pollock TM, Murphy W. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: carbon additions and freckle formation. Metal Mater Trans A. 2001;32(7):1743–1753. doi: 10.1007/s11661-001-0151-5
  • Park JW, Vitek JM, Babu SS, et al. Stray grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds. Sci Technol Weld Joining. 2004;9(6):472–482. doi: 10.1179/136217104225021841
  • Park JW, Babu SS, Vitek JM, et al. Stray grain formation in single crystal Ni-base superalloy welds. J Appl Phys. 2003;94(6):4203–4209. doi: 10.1063/1.1602950
  • Vitek JM. The effect of welding conditions on stray grain formation in single crystal welds. Acta Mater. 2005;53(1):53–67. doi: 10.1016/j.actamat.2004.08.039
  • Anderson TD, Dupont JN, Debroy T. Stray grain formation in welds of single-crystal Ni-base superalloy CMSX-4. Metal Mater Trans A. 2010;41(1):181–193. doi: 10.1007/s11661-009-0078-9
  • Anderson TD, Dupont JN, Debroy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling. Acta Mater. 2010;58(4):1441–1454. doi: 10.1016/j.actamat.2009.10.051
  • Gao Z, Ojo OA. Modeling analysis of hybrid laser-arc welding of single-crystal nickel-base superalloys. Acta Mater. 2012;60(6–7):3153–3167. doi: 10.1016/j.actamat.2012.02.021
  • Yan MA, Jianju W, Pengwei Y. Simulation of weld microstructure of Mo single crystal based on cellular method. Atomic Energy Sci Technol. 2019;53(3):397–402.
  • Yan M, Yanze X, Jianju W. Assessment of stray grain formation in weld joint of single crystal molybdenum by ANSYS FE simulation. Rare Met Mater Eng. 2018;47(9):2621–2625. doi: 10.1016/S1875-5372(18)30198-X
  • Zhongwu H, Zhongkui L, Linjiang G, et al. Measurement and Evaluation of orientation for Mo-Nb alloy single crystal. Rare Met Mater Eng. 2011;40(11):2006–2009.
  • Barabash OM, Babu SS, David SA, et al. Deformation in the heat affected zone during spot welding of a nickel-based single crystal. J Appl Phys. 2003;94(1):738. doi: 10.1063/1.1579863
  • Miao H, Lin L, Taiwen H, et al. Formation mechanism, influencing factors and control measures of low angle boundaries in Ni-based single crystal superalloys. Mater Rev. 2018;32(19):117–127.
  • Farber L. Transmission electron microscopy study of a low-angle boundary in plastically deformed Ti3SiC2. Philos Mag Lett. 1999;79(4):163–170. doi: 10.1080/095008399177390
  • Svchenko VS, Yushchenko KA, Zvjagintseva A, et al. Investigation of structure and crack formation in welded joints of single crystal Ni-base alloys. Weld World. 2007;51(11-12):76–81. doi: 10.1007/BF03266611
  • Huang Y, Humphreys FJ. Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}<001>. Acta Mater. 2000;48(8):2017–2030. doi: 10.1016/S1359-6454(99)00418-8
  • Chao PT, Shen P, Lin CC. Thermal cycle etching of willemite (0001): effects of surface premelting, dislocation outcrops and polygonization. Mater Sci Engin A. 2002;335(1):191–197. doi: 10.1016/S0921-5093(01)01926-8
  • Ohmura T, Minor AM, Stach EA, et al. Dislocation–grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. J Mater Res. 2004;19(12):3626–3632. doi: 10.1557/JMR.2004.0474
  • Shen Z, Wagoner RH, Clark WAT. Dislocation and grain boundary interactions in metals. Acta Metall. 1988;36(12):3231–3242. doi: 10.1016/0001-6160(88)90058-2
  • Cabibbo M, Blum W, Evangelista E, et al. Transmission electron microscopy study of strain-induced low- and high-angle boundary development in equal-channel angular-pressed commercially pure aluminum. Metal Mater Trans A. 2008;39(1):181–189. doi: 10.1007/s11661-007-9350-z
  • Gao Z, Wu Y, Huang J. Analysis of weld pool dynamic during stationary laser–MIG hybrid welding. Int J Adv Manuf Technol. 2009;44(9-10):870–879. doi: 10.1007/s00170-008-1896-4
  • Wang SJ, Wang H, Du K, et al. Deformation-induced structural transition in body-centred cubic molybdenum. Nat Commun. 2014;5:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.