516
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Liquation cracking susceptibility of remelted and reheated weld metals in CM247LC superalloy using multi-bead Varestraint testing

, , &
Pages 108-117 | Received 29 Jun 2022, Accepted 03 Sep 2022, Published online: 13 Sep 2022

References

  • Huang H-E, Koo C-H. Characteristics and mechanical properties of polycrystalline CM 247 LC superalloy casting. Mater Trans. 2004;45:562–568. doi:10.2320/matertrans.45.562.
  • Lee JS, Gu JH, Jung HM, et al. Directional solidification microstructure control in CM247LC superalloy. Mater Today Proc. 2014;1:3–10. doi:10.1016/j.matpr.2014.09.002.
  • Chun EJ, Jeong YS, Kim KM, et al. Suppression of liquation cracking susceptibility via pre-weld heat treatment for manufacturing of CM247LC superalloy turbine blade welds. J Adv Join Process. 2021;4:100069, doi:10.1016/j.jajp.2021.100069.
  • Ai T, Masada J, Ito E. Development of the high efficiency and flexible gas turbine M701F5 by applying “J” class gas turbine technologies. Tech Rev – Mitsubishi Heavy Ind. 2014;51:1–9.
  • Bidron G, Doghri A, Malot T, et al. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating. J Mater Process Technol. 2020;277:116461, doi:10.1016/j.jmatprotec.2019.116461.
  • Alhuzaim A, Imbrogno S, Attallah MM. Direct laser deposition of crack-free CM247LC thin walls: mechanical properties and microstructural effects of heat treatment. Mater Des. 2021;211:110123, doi:10.1016/j.matdes.2021.110123.
  • Griffiths S, Ghasemi-Tabasi H, De Luca A, et al. Influence of Hf on the heat treatment response of additively manufactured Ni-base superalloy CM247LC. Mater Charact. 2021;171:110815, doi:10.1016/j.matchar.2020.110815.
  • Kim K-M, Jeong H-E, Jeong Y-S, et al. Effect of ERNiFeCr-2 filler metal on solidification cracking susceptibility of CM247LC superalloy welds. Korean J Met Mater. 2021;59:698–708. doi:10.3365/kjmm.2021.59.10.710.
  • Jeong Y-S, Kim K-M, Lee U, et al. Evaluation of liquation cracking behaviour and susceptibility in heat-affected zone of CM247LC superalloy welds for turbine blade application. Kor J Met Mater. 2020;58:875–886. doi:10.3365/KJMM.2020.58.12.875.
  • Hsu K-T, Wang H-S, Chen H-G, et al. Effects of the hot isostatic pressing process on crack healing of the laser repair-welded CM247LC superalloy. Metals. 2016;6:238, doi:10.3390/met6100238.
  • Wang H-S, Huang C-Y, Ho K-S, et al. Microstructure evolution of laser repair welded René 77 nickel-based superalloy cast. Mater Trans. 2011;52:2197–2204. doi:10.2320/matertrans.M2011264.
  • Rush MT. Development of weld repair methods for Rene 80 nickel based superalloy [dissertation]. Bedfordshire (UK): Cranfield University; 2012.
  • Andersson J, Sjöberg GP. Repair welding of wrought superalloys: Alloy 718, Allvac 718plus and Waspaloy. Sci Technol Weld Join. 2012;17:49–59. doi:10.1179/1362171811Y.0000000077.
  • Gregoi A, Bertaso D. Welding and deposition of nickel superalloys 718, Waspaloy and single crystal alloy CMSX-10. Weld World. 2007;51:34–47. doi:10.1007/bf03266607.
  • Liu G, Du D, Wang K, et al. Elimination of hot cracking in the laser surface re-melting of the IC10 superalloy by controlling the heat input. J Manuf Process. 2021;72:126–137. doi:10.1016/j.jmapro.2021.10.015.
  • Zhang Z, Zhao Y, Shan J, et al. Evolution behaviour of liquid film in the heat-affected zone of laser cladding non-weldable nickel-based superalloy. J Alloys Compd. 2021;863:158463, doi:10.1016/j.jallcom.2020.158463.
  • Nishimoto K, Saida K, Okauchi H. Microcracking in multipass weld metal of alloy 690 Part 1 - Microcracking susceptibility in reheated weld metal. Sci Technol Weld Join. 2006;11:455–461. doi:10.1179/174329306X94291.
  • Boswell JH, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy. Mater Des. 2019;174:107793, doi:10.1016/j.matdes.2019.107793.
  • Phillips RH, Jordan MF. Weld heat-affected zone liquation cracking and hot ductility in high-strength ferritic steels. Met Technol. 1977;4:396–405. doi:10.1179/030716977803292538.
  • Chen K-C, Chen T-C, Shiue R-K, et al. Liquation cracking in the heat-affected zone of IN738 superalloy weld. Metals. 2018;8:387, doi:10.3390/met8060387.
  • Woo I, Nishimoto K, Tanaka K, et al. Characteristics of heat-affected zone cracking in Inconel 718 cast alloy. Study of weldability of Inconel 718 cast alloy (1st Report). Weld Int. 2000;14:365–374. doi:10.1080/09507110009549195.
  • Reiter MJ. Partial penetration fiber laser welding on austenitic stainless steel, [dissertation]. Columbus (OH): The Ohio State University at Columbus; 2009.
  • Chun E-J, Lee J-H, Kang N. Unmixing behaviour in dissimilar laser welds for duplex and austenitic stainless steels. Sci Technol Weld Join. 2019;24:263–275. doi:10.1080/13621718.2018.1529372.
  • Zhou XR, Ning J, Na SJ, et al. Microstructures and properties of the dissimilar joint of pure molybdenum/T2 copper by single-mode laser welding. Int J Refract Met Hard Mater. 2021;101:105667, doi:10.1016/j.ijrmhm.2021.105667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.