2,799
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimisation of precipitation hardening for 15-5 PH martensitic stainless steel produced by wire arc directed energy deposition

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 558-568 | Received 05 Dec 2022, Accepted 10 Apr 2023, Published online: 23 Apr 2023

References

  • Shrinivas R, Shamanth V, Hemanth K, et al. Materials today: proceedings processes and applications of metal additive manufacturing. Mater Today Proc. 2021;54:2–7.
  • Verhoef LA, Budde BW, Chockalingam C, et al. The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. Energy Policy. 2018;112:349–360.
  • Dickens PM, Pridham MS, Cobb RC, et al. Rapid prototyping using 3-D welding. Solid Freeform Fabrication Proc. 1992: 280–290.
  • Singh SR, Khanna P. Wire arc additive manufacturing (WAAM): a new process to shape engineering materials. Mater Today Proc. 2020. doi:10.1016/j.matpr.2020.08.030.
  • Martina F, Ding J, Williams S, et al. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Addit Manuf. 2019;25:545–550.
  • Ivántabernero PA, Álvarez P, et al. Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP. 2018;68:358–362. doi:10.1016/j.procir.2017.12.095.
  • Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: a review of their microstructure and properties. Mater Sci Eng A. 2020;772:138633.
  • Anzalone GC, Zhang C, Wijnen BAS, et al. A low-cost open-source metal 3-D printer. IEEE Access. 2013;1:803–810.
  • Xin H, Berto F, De JA. Probabilistic strain-fatigue life performance based on stochastic analysis of structural and WAAM-stainless steels. Eng Fail Anal. 2021;127:1–20.
  • Belotti LP, Van Dommelen JAW, Geers MGD, et al. Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel. J Mater Process Technol. 2022;299:1–13.
  • Geng H, Li J, Xiong J, et al. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci Technol Weld Joining. 2016;22:472–483.
  • Tian Y, Shen J, Hu S, et al. Effect of deposition layer on microstructure of Ti–Al bimetallic structures fabricated by wire and arc additive manufacturing. Sci Technol Weld Joining. 2021;27:22–32.
  • Khanna N, Shah P, Chetan. Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during the machining of 15-5-PH SS alloy. Tribol Int. 2020;146:106196. doi:10.1016/j.triboint.2020.106196.
  • Bhaduri AK, Gill TPS, Srinivasan G, et al. Optimised post-weld heat treatment procedures and heat input for welding 17–4PH stainless steel. Sci Technol Weld Joining. 2013;4:295–301.
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatigue. 2017;94:218–235.
  • Hsu KC, Lin CK. High-temperature fatigue crack growth behavior of 17-4 PH stainless steels. 11th International Conference on Fracture 2005, ICF11. 2005;4:2581–2586.
  • LeBrun T, Nakamoto T, Horikawa K, et al. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4 PH stainless steel. Mater Des. 2015;81:44–53.
  • Sarkar S, Kumar CS, Nath AK. Effects of heat treatment and build orientations on the fatigue life of selective laser melted 15-5 PH stainless steel. Mater Sci Eng A. 2019;755:235–245.
  • Stoudt MR, Ricker RE, Lass EA, et al. Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel. Jom. 2017;69:506–515.
  • Thapliyal S. Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys. Mater Res Express. 2019;6:112006.
  • Sowa R, Kowal A, Roga E, et al. Influence of double solution treatment on hardness in 17-4 PH steel. Zaštita Materijala. 2015;56:261–268.
  • Arana M, Ukar E, Rodriguez I, et al. Influence of deposition strategy and heat treatment on mechanical properties and microstructure of 2319 aluminium WAAM components. Mater Des. 2022;221:110974.
  • Guo C, Hu R, Chen F. Microstructure and performances for 15-5 PH stainless steel fabricated through the wire-arc additive manufacturing technology. Mater Technol. 2021;36:831–842.
  • Xu X, Ganguly S, Ding J, et al. Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Mater Charact. 2018;143:152–162.
  • Voestalpine. The future of productivity: wire Arc additive manufacturing (WAAM) [Internet]. Kapfenberg: Voestalpine Böhler Erdstahl GmbH & Co KG; 2018; Available from: https://www.voestalpine.com/welding/mx.
  • Kozamernik N, Bračun D, Klobčar D. WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int J Adv Manuf Technol. 2020;110:1955–1968.
  • Li Y, Luo Y, Li J, et al. Ferrite formation and its effect on deformation mechanism of wire arc additive manufactured 308L stainless steel. J Nucl Mater. 2021;550:152933.
  • Li J, Cheng L, Zhang P, et al. Effect of delta ferrites on the anisotropy of impact toughness in martensitic heat-resistant steel. JMater Res Technol. 2019;8:1781–1788.
  • Wei F, Cheng B, Chew LT, et al. Grain distribution characteristics and effect of diverse size distribution on the Hall-Petch relationship for additively manufactured metal alloys. J Mater Res Technol. 2022;20:4130–4136.
  • Saboori A, Aversa A, Bosio F, et al. An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by directed energy deposition. Mater Sci Eng A. 2019;766:138360. Available from: doi:10.1016/j.msea.2019.138360.
  • Habibi Bajguirani HR. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel. Mater Sci Eng A. 2002;338:142–159.
  • Peng Xy, Zhou Xl, Hua Xz, et al. Effect of aging on hardening behavior of 15-5 PH stainless steel. J Iron Steel Res Int. 2015;22:607–614.
  • Viswanathan UK, Banerjee S, Krishnan R. Effects of aging on the microstructure of 17-4 PH stainless steel. Mater Sci Eng. 1988;104:181–189.
  • Viswanathan UK, Nayar PKK, Krishnan R. Kinetics of precipitation in 17-4 PH stainless steel. Mater Sci Technol. 1989;5:346–349.
  • Kumar VA, Karthikeyan MK, Gupta RK, et al. Aging behavior in 15-5 PH precipitation hardening martensitic stainless steel. Mater Sci Forum. 2012;710:483–488.
  • Wang Y, Zhang Y, Godfrey A, et al. Cryogenic toughness in a low-cost austenitic steel. Commun Mater. 2021;2:1–10. Available from: doi:10.1038/s43246-021-00149-8.