464
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Study on Seismic Response Characteristics of Liquefiable Soil Layers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1287-1315 | Received 22 Mar 2018, Accepted 02 Jan 2019, Published online: 04 Feb 2019

References

  • Adalier, K. and Elgamal, A. [2005] “Liquefaction of over-consolidated sand: a centrifuge investigation,” Journal of Earthquake Engineering 9(1), 127–150.
  • Adampira, M., Alielahi, H., Panji, M. and Koohsari, H. [2015] “Comparison of equivalent linear and nonlinear methods in seismic analysis of liquefiable site response due to near-fault incident waves: a case study,” Arabian Journal of Geosciences 8(5), 3103–3118. doi:10.1007/s12517-014-1399-6.
  • Afacan, K. B., Brandenberg, S. J. and Stewart, J. P. [2014] “Centrifuge modeling studies of site response in soft clay over wide strain range,” Journal of Geotechnical and Geoenvironmental Engineering 140(2), 1–13. doi:10.1061/(ASCE)GT.1943-5606.0001014.
  • Bennett, M. J., McLaughlin, P. V., Sarmiento, J. and Youd, T. L. [1984] Geotechnical Investigation of Liquefaction Sites, U.S. Geological Survey, Menlo Park, California.
  • Bouckovalas, G. and Tsiapas, Y. [2015] “Seismic isolation effects and elastic response spectra of liquefied ground,” in Proceedings from 6th International Conference on Earthquake Geotechnical Engineering, ed. M. Cubrinovski, (New Zealand Geotechnical Society, Wellington, New Zealand).
  • Bouckovalas, G. D., Tsiapas, Y. Z., Theocharis, A. I. and Chaloulos, Y. K. [2016] “Ground response at liquefied sites: seismic isolation or amplification?,” Soil Dynamics and Earthquake Engineering. 91, 329–339.
  • Bouckovalas, G. D., Tsiapas, Y. Z., Zontanou, V. A. and Kalogeraki, C. G. [2017] “Equivalent linear computation of response spectra for liquefiable sites: the spectral envelope method,” Journal of Geotechnical and Geoenvironmental Engineering 143(4). DOI: 10.1061/(ASCE)GT.1943-5606.0001625
  • Chen, J., Shi, X. and Li, J. [2010] “Shaking table test of utility tunnel under non-uniform earthquake wave excitation,” Soil Dynamics and Earthquake Engineering 30(11), 1400–1416. doi:10.1016/j.soildyn.2010.06.014.
  • Dashti, S., Bray, J., Pestana, J., Riemer, M. and Wilson, D. [2010] “Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms,” Journal of Geotechnical and Geoenvironmental Engineering 136(7), 918–929. doi:10.1061/(ASCE)GT.1943-5606.0000306.
  • Derakhshandi, M., Rathje, E. M., Hazirbaba, K. and Mirhosseini, S. M. [2008] “The effect of plastic fines on the pore pressure generation characteristics of saturated sands,” Soil Dynamics and Earthquake Engineering 28(5), 376–386. doi:10.1016/j.soildyn.2007.07.002.
  • Ecemis, N. [2013] “Simulation of seismic liquefaction: 1-g model testing system and shaking table tests,” European Journal of Environmental and Civil Engineering 8189(September), 37–41.
  • Elgamal, A. W. [1996] “Liquefaction of reclaimed island in Kobe, Japan,” International Journal of Geotechnical Engineering 122(1), 39–49. doi:10.1061/(ASCE)0733-9410(1996)122:1(39).
  • Ghalandarzadeh, A., Orita, T., Towhata, I. and Yun, F. [1998] “Shaking table tests on seismic deformation of gravity quay walls,” Soils and Foundations 38, 115–132. doi:10.3208/sandf.38.Special_115.
  • Hamada, M., Isoyama, R. and Wakamatsu, K. [1996] “Liquefaction induced ground displacement and its related damage to lifeline facilities,” Soils and Foundations 36, 81–97. Special Issue on Geotechnical Aspects of the January 17 1995 Hyogoken-Nambu Earthquake.
  • Hashash, Y., Dashti, S., Romero, M., Ghayoomi, M. and Musgrove, M. [2015] “Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments,” Soil Dynamics and Earthquake Engineering 78, 19–31. doi:10.1016/j.soildyn.2015.07.003.
  • Hushmand, B., Scott, R. F. and Crouse, C. B. [1988] “Centrifuge liquefaction tests in a laminar box,” Géotechnique 38(2), 253–262. doi:10.1680/geot.1988.38.2.253.
  • Iai, S. [1989] “Similitude for shaking table tests on soil–structure–fluid model in 1g gravitational field,” Soils and Foundations 29(1), 105–118. doi:10.3208/sandf1972.29.105.
  • Ishihara, K., Yasuda, S. and Shinkawa, N. [1996] “Soil characteristics and ground damage,” Soils and Foundations 36, 109–119. Special Issue on Geotechnical Aspects of the Hyogoken-Nambu Earthquake.
  • Jafarian, Y., Mehrzad, B., Lee, C. J. and Haddad, A. H. [2017] “Centrifuge modeling of seismic foundation-soil foundation interaction on liquefiable sand,” Soil Dynamics and Earthquake Engineering 97, 184–204. doi:10.1016/j.soildyn.2017.03.019.
  • Kostadinov, M. V. and Towhata, I. [2002] “Assesement of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon,” Soil Dynamics and Earthquake Engineering 22(4), 309–322. doi:10.1016/S0267-7261(02)00018-0.
  • Kramer, S. L. [1996] “Geotechnical earthquake engineering,” in Prentice- Hall International Series in Civil Engineering and Engineering Mechanics (Prentice-Hall, Inc., Upper Saddle River, New Jersey).
  • Masanori, H., Isoyama, R. and Wakamatsu, K. [1996] “Liquefaction-induced ground displacement and its related damage to lifeline facilities,” Soils and Foundations 36(Special), 81–97. doi:10.3208/sandf.36.Special_81.
  • Mirshekari, M. and Ghayoomi, M. [2017] “Centrifuge tests to assess seismic site response of partially saturated sand layers,” Soil Dynamics and Earthquake Engineering 94, 254–265. doi:10.1016/j.soildyn.2017.01.024.
  • Mori, S., Miwa, S. and Numata, A. [1996] “Shaking table tests to elucidate liquefaction behavior of reclaimed lands of weathered granite during the 1995 Hyogo ken Nanbu earthquake,” Journal of Structured Mechanics Earthquake Engineering 549/I-, 231–248.
  • Olarte, J., Paramasivam, B., Dashti, S., Liel, A. and Zannin, J. [2017] “Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground,” Soil Dynamics and Earthquake Engineering 97, 304–323. November 2015.
  • Rathje, E. M., Abrahamson, N. A. and Bray, J. B. D. [1998] “Simplified frequency content estimates of earthquake ground motions,” Journal of Geotechnical and Geoenvironmental Engineering 124(2), 150–159. doi:10.1061/(ASCE)1090-0241(1998)124:2(150).
  • Rollins, K. M., McHood, M. D., Hryciw, R. D., Momolka, M. and Shewvridge, E. S. [1997] “Ground response on Treasure Island,” in The Loma Prieta, California, Earthquake of October 17 1989 – Strong Ground Motion, ed. R. D. Borcherdt (U.S. Geological Survey, Washington, District of Columbia), pp. 109–119.
  • Sadrekarimi, A. [2013] “Dynamic behavior of granular soils at shallow depths from 1 g shaking table tests,” Journal of Earthquake Engineering 17, 227–252. doi:10.1080/13632469.2012.691616.
  • Sadrekarimi, A., Ghalandarzadeh, A. and Sadrekarimi, J. [2008] “Static and dynamic behavior of hunchbacked gravity quay walls,” Soil Dynamics and Earthquake Engineering 28, 99–117. doi:10.1016/j.soildyn.2007.05.004.
  • Sawicki, A. and Kulczykowski, M. [2014] “The shaking frequency effect in the dynamics of a model sandy layer,” Journal of Earthquake Engineering 18, 1266–1280. doi:10.1080/13632469.2014.954066.
  • Shimizu, Y., Yamazaki, F., Yasuda, S., Towhata, I., Suzuki, T., Isoyama, R., Ishida, E., et al. [2006] “Development of real-time safety control system for urban gas supply network,” Journal of Geotechnical and Geoenvironmental Engineering 132(2), 237–249. doi:10.1061/(ASCE)1090-0241(2006)132:2(237).
  • Su, D., Ming, H. Y. and Li, X. S. [2013] “Effect of shaking strength on the seismic response of liquefiable level ground,” Engineering Geology 166, 262–271. doi:10.1016/j.enggeo.2013.09.013.
  • Taboada, V. M. and Dobry, R. [1993] “Experimental results of model no. 1 at RPI.” in Int’l Conf. On the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, ed. K. Arulanandan and R. F. Scott (University of California, Davis), pp. 3–17.
  • Towhata, I. [2008] Geotechnical Earthquake Engineering, 1st, Springer-Verlag Berlin Heidelberg, Verlag Berlin Heidelberg.
  • Towhata, I. and Ishihara, K. [1985] “Shear work and pore water pressure in undrained shear.,” Soils and Foundations 25(3), 73–84. doi:10.3208/sandf1972.25.3_73.
  • Towhata, I., Park, J. K., Orense, R. P. and Kano, H. [1996] “Use of spectrum intensity for immediate detection of subsoil liquefaction,” Soils and Foundations 36(2), 29–44. doi:10.3208/sandf.36.2_29.
  • Trifunac, M. D. and Todorovska, M. I. [1998] “Nonlinear soil response as a natural passive isolation mechanism—the 1994 Northridge, California, earthquake,” Soil Dynamics and Earthquake Engineering 17(1), 41–51. doi:10.1016/S0267-7261(97)00028-6.
  • Varghese, R. M. and Latha, G. M. [2013] “Effect of overburden stress and surcharge pressure on the liquefaction response of sands,” International Journal of Geotechnical Engineering 7(4), 402–410. doi:10.1179/1939787913Y.0000000003.
  • Watanabe, K., Sawada, R. and Koseki, J. [2016] “Uplift mechanism of open-cut tunnel in liquefied ground and simplified method to evaluate the stability against uplifting,” Soils and Foundations 56(3), 412–426. doi:10.1016/j.sandf.2016.04.008.
  • Yasuda, S., Harada, K., Shinkawa, N. and Ariyama, Y. [2008], “Shaking table tests and analyses on the evaluation of appropriate densification area against soil liquefaction”, The 14th World Conference on Earthquake Engineering, October 12–17, Beijing, China.
  • Youd, T. L. and Carter, B. L. [2005] “Influence of soil softening and liquefaction on spectral acceleration,” Journal of Geotechnical and Geoenvironmental Engineering 131(7), 811–825. doi:10.1061/(ASCE)1090-0241(2005)131:7(811).
  • Yuan, X., Sun, R., Chen, L. and Tang, F. [2010] “A method for detecting site liquefaction by seismic records,” Soil Dynamics and Earthquake Engineering 30(4), 270–279. doi:10.1016/j.soildyn.2009.12.003.
  • Zeghal, M. and Elgamal, A. A.-W. [1994] “Analysis of site liquefaction using earthquake records,” International Journal of Geotechnical Engineering 120(6), 996–1017. doi:10.1061/(ASCE)0733-9410(1994)120:6(996).
  • Zekri, A., Ghalandarzadeh, A., Ghasemi, P. and Aminfar, M. H. [2015] “Experimental study of remediation measures of anchored sheet pile quay walls using soil compaction,” Ocean Engineering 93, 45–63. doi:10.1016/j.oceaneng.2014.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.