725
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Displacement-Based Framework for Simplified Seismic Loss Assessment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-22 | Received 31 Oct 2019, Accepted 08 Feb 2020, Published online: 08 Jun 2020

References

  • Ay, B. Ö., M. J. Fox, and T. J. Sullivan. 2017. Technical note: Practical challenges facing the selection of conditional spectrum-compatible accelerograms. Journal of Earthquake Engineering 21 (1): 169–80. doi: 10.1080/13632469.2016.1157527.
  • Baker, J. W. 2011. Conditional Mean Spectrum: Tool for Ground-Motion Selection. Journal of Structural Engineering, American Society of Civil Engineers 137 (3): 322–31. doi: 10.1061/(asce)st.1943-541x.0000215.
  • Barani, S., D. Spallarossa, and P. Bazzurro. 2009. Disaggregation of probabilistic ground-motion Hazard in Italy. Bulletin of the Seismological Society of America 99 (5): 2638–61. doi: 10.1785/0120080348.
  • Bosio, M., A. Belleri, P. Riva, and A. Marini. 2020. Displacement-based simplified seismic loss assessment of italian precast buildings. Journal of Earthquake Engineering. doi: 10.1080/13632469.2020.1724215.
  • Bradley, B. A., and R. P. Dhakal. 2008. Error estimation of closed-form solution for annual rate of structural collapse. Earthquake Engineering & Structural Dynamics 37 (15): 1721–37. doi: 10.1002/eqe.833.
  • Cantisani, G., G. Della Corte, T. J. Sullivan, and R. Roldan. 2020. Displacement-based simplified seismic loss assessment of italian steel buildings. Journal of Earthquake Engineering. doi: 10.1080/13632469.2020.1713932.
  • Cardone, D., and A. Flora. 2017. Multiple inelastic mechanisms analysis (MIMA): A simplified method for the estimation of the seismic response of RC frame buildings. Engineering Structures 145: 368–80. doi: 10.1016/j.engstruct.2017.05.026.
  • Cardone, D., G. Perrone, and A. Flora. 2020. Displacement-based simplified seismic loss assessment of Italian pre-70s RC buildings. Journal of Earthquake Engineering. doi: 10.1080/13632469.2020.1724215.
  • Caruso, C., R. Bento, and J. M. Castro. 2019. A contribution to the seismic performance and loss assessment of old RC wall-frame building. Engineering Structures 197: 109369. doi: 10.1016/j.engstruct.2019.109369.
  • Casotto, C., V. Silva, H. Crowley, R. Nascimbene, and R. Pinho. 2015. Seismic fragility of Italian RC precast industrial structures. Engineering Structures 94: 122–36. doi: 10.1016/j.engstruct.2015.02.034.
  • Cimellaro, G. P. 2009. Field reconnaissance following the April 6, 2009 L’Aquila earthquake in Italy. Buffalo, USA. http://mceer.buffalo.edu/research/Reconnaissance/LAquila4-06-09/090611_laquila earthquake.pdf
  • Cornell, C. A., F. Jalayer, R. O. Hamburger, and D. A. Foutch. 2002. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering 128 (4): 526–33. doi: 10.1061/(asce)0733-9445(2002)128:4(526).
  • Cornell, C. A., and H. Krawinkler. 2000. Progress and challenges in seismic performance assessment. PEER Center News 3 (2): 1–2.
  • Decreto Ministeriale. 2017. Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni - 58/2017. Rome, Italy: Il ministero delle infrastrutture e dei trasporti.
  • Federal Emergency Management Agency. 2012. Seismic performance assessment of buildings - volume 1 – Methodology FEMA P-58-1, Fema. 58–1, Federal Emergency Management Agency, Washington DC.
  • Freeman, S. A. 1998. The capacity spectrum method as a tool for seismic design. 11th European Conference of Earthquake Engineering, Paris, France.
  • Giordano, N., K. M. Mosalam, and S. Günay. 2019. Probabilistic performance-based seismic assessment of an existing masonry building. Earthquake Spectra. doi: 10.1177/8755293019878191.
  • Glaister, S., and R. Pinho. 2003. Development of a simplified deformation-based method for seismic vulnerability assessment. Journal of Earthquake Engineering 7 (sup001): 107–40. doi: 10.1080/13632460309350475.
  • Günay, S., and K. M. Mosalam. 2013. PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering 17 (6): 829–58. doi: 10.1080/13632469.2013.787377.
  • Hak, S., P. Morandi, G. Magenes, and T. J. Sullivan. 2012. Damage control for clay masonry infills in the design of RC frame structures. Journal of Earthquake Engineering 16 (sup1): 1–35. doi: 10.1080/13632469.2012.670575.
  • Haselton, C. B., and G. G. Deierlein. 2007. Assessing seismic collapse of modern reinforced concrete moment frame buildings. Blume Report No. 156, Stanford University, Palo Alto, CA.
  • Jalayer, F. 2003. Direct probabilistic seismic analysis : Implementing non-linear dynamic assessments. PhD Thesis, Stanford University, USA.
  • Jalayer, F., and C. A. Cornell. 2009. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthquake Engineering & Structural Dynamics 38 (8): 951–72. doi: 10.1002/eqe.876.
  • Jayaram, N., T. Lin, and J. W. Baker. 2011. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra 27 (3): 797–815. doi: 10.1193/1.3608002.
  • Krawinkler, H. 2005. Van Nuys hotel building testbed report: Exercising seismic performance assessment. PEER Report 2005/11, Pacific Earthquake Engineering Research Center, Berkeley, CA.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures Elsevier Ltd 56: 1787–99. doi: 10.1016/j.engstruct.2013.08.002.
  • Lagomarsino, S., and S. Cattari. 2015. Performance-based earthquake engineering of URM buildings. Displacement-based loss assessment of masonry structures (First year Report of Reluis/DPC 2014–2018), Reluis, Pavia, Italy.
  • Landi, L., D. Saborio-Romano, D. P. Welch, and T. J. Sullivan. 2020. Displacement-based simplified seismic loss assessment of Italian Post-70s RC buildings. Journal of Earthquake Engineering. doi: 10.1080/13632469.2020.1735577.
  • Liel, A. B. 2008. Assessing the collapse risk of California’s existing reinforced concrete frame structures: Metrics for seismic safety decisions. PhD Thesis, Stanford University, CA.
  • Magliulo, G., M. Ercolino, C. Petrone, O. Coppola, and G. Manfredi. 2014. The Emilia earthquake: Seismic performance of precast reinforced concrete buildings. Earthquake Spectra 30 (2): 891–912. doi: 10.1193/091012eqs285m.
  • Mitrani Reiser, J. 2007. An ounce of prevention: Probabilistic loss estimation for performance-based earthquake engineering. PhD Thesis, California Institute of Technology, Pasadena.
  • O’Reilly, G. J. 2016. Performance-based seismic assessment and retrofit of existing RC frame buildings in Italy. PhD Thesis, IUSS Pavia, Italy.
  • O’Reilly, G. J., D. Perrone, M. Fox, R. Monteiro, and A. Filiatrault. 2018. Seismic assessment and loss estimation of existing school buildings in Italy. Engineering Structures 168: 142–62. doi: 10.1016/j.engstruct.2018.04.056.
  • O’Reilly, G. J., D. Perrone, M. Fox, R. Monteiro, A. Filiatrault, I. Lanese, and A. Pavese. 2019. System identification and seismic assessment modeling implications for italian school buildings. Journal of Performance of Constructed Facilities 33 (1): 04018089. doi: 10.1061/(asce)cf.1943-5509.0001237.
  • O’Reilly, G. J., and G. M. Calvi. 2019. Conceptual seismic design in performance-based earthquake engineering. Earthquake Engineering & Structural Dynamics 48 (4): 389–411. doi: 10.1002/eqe.3141.
  • O’Reilly, G. J., and G. M. Calvi. 2020. Quantifying seismic risk in structures via simplified demand–intensity models. Bulletin of Earthquake Engineering. doi: 10.1007/s10518-019-00776-0.
  • O’Reilly, G. J., and T. J. Sullivan. 2018. Probabilistic seismic assessment and retrofit considerations for Italian RC frame buildings. Bulletin of Earthquake Engineering 16 (3): 1447–85. doi: 10.1007/s10518-017-0257-9.
  • O’Reilly, G. J., and T. J. Sullivan. 2019. Modeling techniques for the seismic assessment of the existing Italian RC frame structures. Journal of Earthquake Engineering 23 (8): 1262–96. doi: 10.1080/13632469.2017.1360224.
  • Ottonelli, D., S. Cattari, and S. Lagomarsino. 2020. Displacement-based seismic loss assessment of Italian masonry buildings. Journal of Earthquake Engineering. doi: 10.1080/13632469.2020.1755747.
  • Penna, A., P. Morandi, M. Rota, C. F. Manzini, F. da Porto, and G. Magenes. 2014. Performance of masonry buildings during the Emilia 2012 earthquake. Bulletin of Earthquake Engineering 12 (5): 2255–73. doi: 10.1007/s10518-013-9496-6.
  • Perrone, D., and A. Filiatrault. 2018. Seismic demand on non-structural elements: Influence of masonry infills on floor response spectra. 16th European Conference on Earthquake Engineering, Thessaloniki, Greece.
  • Perrone, D., G. J. O’Reilly, R. Monteiro, and A. Filiatrault. 2020. Assessing seismic risk in typical Italian school buildings: From in-situ survey to loss estimation. International Journal of Disaster Risk Reduction 44: 101448. doi: 10.1016/j.ijdrr.2019.101448.
  • Porter, K. A., J. L. Beck, and R. V. Shaikhutdinov. 2004. Simplified estimation of economic seismic risk for buildings. Earthquake Spectra 20 (4): 1239–63. doi: 10.1193/1.1809129.
  • Priestley, M. J. N. 1993. Myths and fallacies in earthquake engineering- conflicts between design and reality. Bulletin of the New Zealand Society for Earthquake Engineering 26 (3): 329–41. doi: 10.5459/bnzsee.26.3.329-341.
  • Priestley, M. J. N. 1997. Displacement-based seismic assessment of reinforced concrete buildings. Journal of Earthquake Engineering 1 (1): 157–92. doi: 10.1080/13632469708962365.
  • Priestley, M. J. N. 2003. Myths and fallacies in earthquake engineering, revisited. The 9th Mallet Milne Lecture. Pavia, Italy: IUSS Press.
  • Priestley, M. J. N., G. M. Calvi, and M. J. Kowalsky. 2007. Displacement based seismic design of structures. Pavia, Italy: IUSS Press.
  • Ramirez, C. M., and E. Miranda. 2009. Building specific loss estimation methods & tools for simplified performance based earthquake engineering. Blume Report No. 171, Blume Earthquake Engineering Research Center, Stanford, CA.
  • Regio Decreto. 1939. Norme per l’esecuzione delle opere conglomerato cementizio semplice od armato - 2229/39. Rome, Italy.
  • Shibata, A., and M. A. Sozen. 1976. Substitute-structure method for seismic design in R/C. Journal of the Structural Division, ASCE 102 (1): 1–18.
  • Silva, A., J. M. Castro, and R. Monteiro. 2020. A rational approach to the conversion of FEMA-P58 seismic repair costs to Europe. Earthquake Spectra. doi: 10.1177/8755293019899964.
  • Sousa, L., and R. Monteiro. 2018. Seismic retrofit options for non-structural building partition walls: Impact on loss estimation and cost-benefit analysis. Engineering Structures 161: 8–27. doi: 10.1016/j.engstruct.2018.01.028.
  • Sullivan, T. J., D. Saborio-Romano, G. J. O’Reilly, D. P. Welch, and L. Landi. 2018. Simplified Pushover analysis of moment resisting frame structures. Journal of Earthquake Engineering 1–28. doi: 10.1080/13632469.2018.1528911.
  • Sullivan, T. J., G. M. Calvi, M. J. N. Priestley, and M. J. Kowalsky. 2003. The limitations and performances of different displacement-based design methods. Journal of Earthquake Engineering 7 (S1): 201–41. doi: 10.1080/13632460309350478.
  • Torquati, M., A. Belleri, and P. Riva. 2018. Displacement-based seismic assessment for precast concrete frames with non-emulative connections. Journal of Earthquake Engineering 1–28. doi: 10.1080/13632469.2018.1475311.
  • Vamvatsikos, D. 2002. Seismic performance, capacity and reliability of sructures as seen through incremental dynamic analysis. PhD Thesis, Stanford University, Stanford, CA.
  • Vamvatsikos, D., and C. A. Cornell. 2002. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics 31 (3): 491–514. doi: 10.1002/eqe.141.
  • Welch, D. P., T. J. Sullivan, and G. M. Calvi. 2014. Developing direct displacement-based procedures for simplified loss assessment in performance-based earthquake engineering. Journal of Earthquake Engineering 18 (2): 290–322. doi: 10.1080/13632469.2013.851046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.