909
Views
52
CrossRef citations to date
0
Altmetric
Research Article

Seismic Performance of Self-centering Steel Frames with SMA-viscoelastic Hybrid Braces

, , , , &
Pages 5004-5031 | Received 07 May 2020, Accepted 22 Nov 2020, Published online: 21 Dec 2020

References

  • ASCE/SEI 7–16. 2016. Minimum design loads for buildings and other structures, American Society of Civil Engineers (ASCE).
  • Baker, J. W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of American 97 (5): 1486–501. doi: 10.1785/0120060255.
  • Chou, C. C., and J. H. Chen. 2011a. Seismic design and shake table tests of a steel post-tensioned self-centering moment frame with a slab accommodating frame expansion. Earthquake Engineering & Structural Dynamics 40 (11): 1241–61. doi: 10.1002/eqe.1086.
  • Chou, C. C., and J. H. Chen. 2011b. Development of floor slab for steel post-tensioned self-centering moment frames. Journal of Constructional Steel Research 67 (10): 1621–35. doi: 10.1016/j.jcsr.2011.04.006.
  • Chou, C. C., T. H. Wu, A. R. O. Beato, P. T. Chung, and Y. C. Chen. 2016. Seismic design and tests of a full-scale one-story one-bay steel frame with a dual-core self-centering brace. Engineering Structures 111: 435–50. doi: 10.1016/j.engstruct.2015.12.007.
  • Chou, C. C., Y. C. Chen, D. H. Pham, and V. M. Truong. 2014. Steel braced frames with dual-core SCBs and sandwiched BRBs: Mechanics, modeling and seismic demands. Engineering Structure 72: 26–40. doi: 10.1016/j.engstruct.2014.04.022.
  • Christopoulos, C., R. Tremblay, H. J. Kim, and M. Lacerte. 2008. Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation. Journal of Structural Engineering 134 (1): 96–107. doi: 10.1061/(ASCE)0733-9445(2008)134:1(96).
  • Erochko, J., C. Christopoulos, and R. Tremblay. 2015a. Design, testing, and detailed component modeling of a high-capacity self-centering energy-dissipative brace. Journal of Structural Engineering 141 (8): 04014193. doi: 10.1061/(ASCE)ST.1943-541X.0001166.
  • Erochko, J., C. Christopoulos, and R. Tremblay. 2015b. Design and testing of an enhanced-elongation telescoping self-centering energy-dissipative brace. Journal of Structural Engineering 141 (6): 04014163. doi: 10.1061/(ASCE)ST.1943-541X.0001109.
  • Erochko, J., C. Christopoulos, R. Tremblay, and H. J. Kim. 2013. Shake table testing and numerical simulation of a self-centering energy dissipative braced frame. Earthquake Engineering & Structural Dynamic 42 (11): 1617–35. doi: 10.1002/eqe.2290.
  • Fan, X., L. Xu, and Z. Li. 2019. Seismic performance evaluation of steel frames with pre-pressed spring self-centering braces. Journal of Constructional Steel Research 162: 105761. doi: 10.1016/j.jcsr.2019.105761.
  • Fang, C., M. C. H. Yam, A. C. C. Lam, and L. K. Xie. 2014. Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts. Journal of Constructional Steel Research 94 (94): 122–36. doi: 10.1016/j.jcsr.2013.11.008.
  • Fang, C., M. C. H. Yam, A. C. C. Lam, and Y. Y. Zhang. 2015. Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices. Smart Materials and Structures 24 (7): 075024. doi: 10.1088/0964-1726/24/7/075024.
  • Fang, C., Q. Zhong, W. Wang, S. Hu, and C. Qiu. 2018b. Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes. Engineering Structures 177: 579–97. doi: 10.1016/j.engstruct.2018.10.013.
  • Fang, C., and W. Wang. 2020. Shape memory alloys for seismic resilience. Springer. doi: 10.1007/978-981-13-7040-3.
  • Fang, C., W. Wang, A. Zhang, R. Sause, J. Ricles, and Y. Chen. 2019a. Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs. Journal of Structural Engineering 145 (10): 0409109. doi: 10.1061/(ASCE)ST.1943-541X.0002414.
  • Fang, C., W. Wang, C. He, and Y. Y. Chen. 2017. Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts. Engineering Structures 150: 390–408. doi: 10.1016/j.engstruct.2017.07.067.
  • Fang, C., W. Wang, J. Ricles, X. Yang, Q. Zhong, R. Sause, and Y. Chen. 2018a. Application of an innovative SMA ring spring system for self-centering steel frames subject to seismic conditions. Journal of Structural Engineering 144 (8): 04018114. doi: 10.1061/(ASCE)ST.1943-541X.0002127.
  • Fang, C., W. Wang, and W. Feng. 2019. Experimental and numerical studies on self-centring beam-to-column connections free from frame expansion. Engineering Structures 198: 109526. doi: 10.1016/j.engstruct.2019.109526.
  • Fang, C., X. Y. Zhou, A. I. Osofero, Z. Shu, and M. Corradi. 2016. Superelastic SMA Belleville washers for seismic resisting applications: Experimental study and modelling strategy. Smart Materials and Structures 25 (10): 105013. doi: 10.1088/0964-1726/25/10/105013.
  • Fang, C., Y. Ping, and Y. Chen. 2020. Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames. Earthquake Engineering & Structural Dynamics 49 (2): 155–74. doi: 10.1002/eqe.3231.
  • Fang, C., Y. Zheng, J. Chen, M. C. H. Yam, and W. Wang. 2019b. Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application. Engineering Structures 183: 533–49. doi: 10.1016/j.engstruct.2019.01.049.
  • Federal Emergency Management Agency (FEMA), FEMA P695, Quantification of Building Seismic Performance Factors, 2009.
  • FEMA. 2012. Seismic Performance Assessment of Buildings. Volume 1 Methodology. P-58-1. Federal Emergency Management Agency, Washington, DC.
  • Feng, W., C. Fang, and W. Wang. 2019. Behavior and design of top flange-rotated self-centering steel connections equipped with SMA ring spring dampers. Journal of Constructional Steel Research 159: 315–29. doi: 10.1016/j.jcsr.2019.04.046.
  • Garlock, M. E. M., and J. Li. 2008. Steel self-centering moment frames with collector beam floor diaphragms. Journal of Constructional Steel Research 64 (5): 526–38. doi: 10.1016/j.jcsr.2007.10.006.
  • Guo, J. W. W., and C. Christopoulos. 2018. A probabilistic framework for estimating the residual drift of idealized SDOF systems of non-degrading conventional and damped structures. Earthquake Engineering & Structural Dynamics 47 (2): 479–96. doi: 10.1002/eqe.2975.
  • Huang, X., M. R. Eatherton, and Z. Zhou. 2020. Initial stiffness of self-centering systems and application to self-centering-beam moment-frames. Engineering Structures 203: 109890. doi: 10.1016/j.engstruct.2019.109890.
  • Kam, W. Y., S. Pampanin, A. Palermo, and A. J. Carr. 2010. Self-centering structural systems with combination of hysteretic and viscous energy dissipations. Earthquake Engineering & Structural Dynamics 39 (10): 1083–108. doi: 10.1002/eqe.983.
  • Karavasilis, T. L., and C. Y. Seo. 2011. Seismic structural and non-structural performance evaluation of highly damped self-centering and conventional systems. Engineering Structures 33 (8): 2248–58. doi: 10.1016/j.engstruct.2011.04.001.
  • Kawashima, K., G. A. MacRae, J. Hoshikuma, and K. Nagaya. 1998. Residual displacement response spectrum. Journal of Structural Engineering 124 (5): 523–30. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523).
  • Kitayama, S., and M. C. Constantinou. 2016. Design and analysis of buildings with fluidic self-centering systems. Journal of Structural Engineering 142 (11): 04016105. doi: 10.1061/(ASCE)ST.1943-541X.0001583.
  • Li, Z., M. He, and K. Wang. 2018. Hysteretic performance of self-centering glulam beam-to-column connections. Journal of Structural Engineering 144 (5): 04018031. doi: 10.1061/(ASCE)ST.1943-541X.0002012.
  • Lin, Y. C., R. Sause, and J. M. Ricles. 2013. Seismic performance of a steel self-centering moment resisting frame: Hybrid simulations under design basis earthquake. Journal of Structural Engineering 139 (11): 1823–32. doi: 10.1061/(asce)st.1943-541x.0000745.
  • Mas, B., D. Biggs, I. Vieito, A. Cladera, J. Shaw, and F. Martínez-Abella. 2017. Superelastic shape memory alloy cables for reinforced concrete applications. Construction and Building Materials 148: 307–20. doi: 10.1016/j.conbuildmat.2017.05.041.
  • Mazzoni, S., F. McKenna, M. Scott, and G. Fenves. 2006. Open system for earthquake engineering simulation (OpenSees). In User command language manual, Pacific Earthquake Engineering Research Center. Berkeley: University of California.
  • McCormick, J., H. Aburano, M. Ikenaga, and M. Nakashima. 2008. Permissible residual deformation levels for building structures considering both safety and human elements. In Proc. 14th World Conf. Earthquake Engineering. Beijing: Seismological Press of China.
  • Miller, D. J., L. A. Fahnestock, and M. R. Eatherton. 2012. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace. Engineering Structures 40: 288–98. doi: 10.1016/j.engstruct.2012.02.037.
  • Qiu, C., H. Li, K. Ji, H. Hou, and L. Tian. 2017. Performance-based plastic design approach for multi-story self-centering concentrically braced frames using sma braces. Engineering Structures 153: 628–38. doi: 10.1016/j.engstruct.2017.10.068.
  • Qiu, C., and S. Zhu. 2017a. Shake table test and numerical study of self-centering steel frame with SMA braces. Earthquake Engineering & Structural Dynamic 46 (1): 117–37. doi: 10.1002/eqe.2777.
  • Qiu, C., and S. Zhu. 2017b. Performance-based seismic design of self-centering steel frames with SMA-based braces. Engineering Structures 130: 67–82. doi: 10.1016/j.engstruct.2016.09.051.
  • Qiu, C. X., and S. Zhu. 2016. High-mode effects on seismic performance of multi-story self-centering braced steel frames. Journal of Constructional Steel Research 119: 133–43. doi: 10.1016/j.jcsr.2015.12.008.
  • Ray-Chaudhuri, S., and T. C. Hutchinson. 2011. Effect of nonlinearity of frame buildings on peak horizontal floor acceleration. Journal of Earthquake Engineering 15 (1): 124–42. doi: 10.1080/13632461003668046.
  • Reedlunn, B., S. Daly, and J. Shaw. 2013. Superelastic shape memory alloy cables: Part I–isothermal tension experiments. International Journal of Solids and Structures 50 (20–21): 3009–26. doi: 10.1016/j.ijsolstr.2013.03.013.
  • Ricles, J. M., R. Sause, M. Garlock, and C. Zhao. 2001. Post-tensioned seismic resistant connections for steel frames. Journal of Structural Engineering 127 (2): 113–21. doi: 10.1061/(ASCE)0733-9445(2001)127:2(113).
  • Ricles, J. M., R. Sause, S. W. Peng, and L. W. Lu. 2002. Experimental evaluation of earthquake resistant post-tensioned steel connections. Journal of Structural Engineering 128 (7): 850–59. doi: 10.1061/(ASCE)0733-9445(2002)128:7(850).
  • Ruiz-Garcia, J., and A. Miranda. 2006. Residual displacement ratios for assessment of existing structures. Earthquake Engineering & Structural Dynamics 35 (3): 315–36. doi: 10.1002/eqe.523.
  • Shu, Z., J. Zhang, and S. Nagarajaiah. 2016. Dimensional analysis of inelastic structures with negative stiffness and supplemental damping devices. Journal of Structural Engineering 143 (3): 04016184. doi: 10.1061/(ASCE)ST.1943-541X.0001658.
  • Silwal, B., O. E. Ozbulut, and R. J. Michael. 2016. Seismic collapse evaluation of steel moment resisting frames with superelastic viscous damper. Journal of Constructional Steel Research 126: 26–36. doi: 10.1016/j.jcsr.2016.07.002.
  • Silwal, B., R. J. Michael, and O. E. Ozbulut. 2015. A superelastic viscous damper for enhanced seismic performance of steel moment frames. Engineering Structures 105: 152–64. doi: 10.1016/j.engstruct.2015.10.005.
  • Somerville, P. G. 2003. Magnitude scaling of the near fault rupture directivity pulse. Physics of the Earth and Planetary Interiors 137 (1–4): 201–12. doi: 10.1016/S0031-9201(03)00015-3.
  • Tremblay, R., M. Lacerte, and C. Christopoulos. 2008. Seismic response of multistory buildings with self-centering energy dissipative steel braces. Journal of Structural Engineering 134 (1): 108–20. doi: 10.1061/(ASCE)0733-9445(2008)134:1(108).
  • Tsai, C. S., and H. H. Lee. 1993. Applications of viscoelastic dampers to high-rise buildings. Journal of Structural Engineering 119 (4): 1222–33. doi: 10.1061/(ASCE)0733-9445(1993)119:4(1222).
  • Tzimas, A. S., G. S. Kamaris, T. L. Karavasilis, and C. Galasso. 2016. Collapse risk and residual drift performance of steel buildings using post-tensioned MRFs and viscous dampers in near-fault regions. Bulletin of Earthquake Engineering 14 (6): 1643–62. doi: 10.1007/s10518-016-9898-3.
  • Wang, B., S. Zhu, C. Qiu, and H. Jin. 2019a. High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation. Engineering Structures 182: 446–58. doi: 10.1016/j.engstruct.2018.12.077.
  • Wang, W., C. Fang, A. Zhang, and X. Liu. 2019b. Manufacturing and performance of a novel self-centring damper with shape memory alloy ring springs for seismic resilience. Structural Control & Health Monitoring 26 (5): e2337. doi: 10.1002/stc.2337.
  • Wang, W., C. Fang, and J. Liu. 2017. Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles. Journal of Structural Engineering 143 (2): 04016175. doi: 10.1061/(ASCE)ST.1943-541X.0001675.
  • Wang, W., C. Fang, X. Yang, Y. Y. Chen, J. Ricles, and R. Sause. 2017. Innovative use of a shape memory alloy ring spring system for self-centering connections. Engineering Structures 153: 503–15. doi: 10.1016/j.engstruct.2017.10.039.
  • Wood, A., I. Noy, and M. Parker. 2016. The Canterbury rebuild five years on from the Christchurch earthquake. Reserve Bank of New Zealand Bulletin 79 (3): 1–16.
  • Xu, L. H., X. W. Fan, and Z. X. Li. 2017. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs. Journal of Constructional Steel Research 139: 363–73. doi: 10.1016/j.jcsr.2017.09.021.
  • Yam, M. C. H., C. Fang, A. C. C. Lam, and Y. Y. Zhang. 2015. Numerical study and practical design of beam-to-column connections with shape memory alloys. Journal of Constructional Steel Research 104: 177–92. doi: 10.1016/j.jcsr.2014.10.017.
  • Zhang, A. L., Y. X. Zhang, R. Li, and Z. Y. Wang. 2016. Cyclic behavior of a prefabricated self-centering beam–column connection with a bolted web friction device. Engineering Structures 111: 185–98. doi: 10.1016/j.engstruct.2015.12.025.
  • Zimmer, M. S. 1999. Characterization of viscoelastic materials for use in seismic energy dissipation systems. State University of New York at Buffalo.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.