254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multiscale Investigations of RC Shear Wall Buildings

, , &
Pages 5032-5057 | Received 09 Jan 2019, Accepted 25 Nov 2020, Published online: 04 Jan 2021

References

  • Álvarez, R., J. I. Restrepo, and M. Panagiotou. 2020. RC wall plastic hinge out-of-plane buckling: Analysis using the nonlinear beam-truss model. Journal of Structural Engineering 146 (12): 04020274. doi: 10.1061/(ASCE)ST.1943-541X.0002836.
  • Beyer, K., A. Dazio, and M. J. N. Priestley. 2008. Quasi-static cyclic tests of two U-shaped reinforced concrete walls. Journal of Earthquake Engineering 12 (7): 1023–53. doi: 10.1080/13632460802003272.
  • Cho, I. H. 2013. Virtual earthquake engineering laboratory for capturing nonlinear shear, localized damage, and progressive buckling of bar. Earthquake Spectra 29 (1): 103–26. doi: 10.1193/1.4000095.
  • Cho, I. H. 2018. Deformation gradient-based remedy for mesh objective three-dimensional interlocking mechanism. ASCE Journal of Engineering Mechanics 144 (1): 04017153. doi: 10.1061/(ASCE)EM.1943-7889.0001369.
  • Cho, I. H., I. Song, and Y. L. Teng. 2018. Numerical moment matching stabilized by a genetic algorithm for engineering data squashing and fast uncertainty quantification. Computers & Structures 204: 31–47. doi: 10.1016/j.compstruc.2018.04.002.
  • Cho, I. H., and J. F. Hall. 2014. General confinement model based on nonlocal information. ASCE Journal of Engineering Mechanics 140 (6): 04014026. doi: 10.1061/(ASCE)EM.1943-7889.0000724.
  • Cho, I. H., and K. A. Porter 2014a. Structure-independent parallel platform for nonlinear analyses of general real-scale RC structures under cyclic loading, ASCE Journal of Structural Engineering 140 (8),(SPECIAL ISSUE): Computational Simulation in Structural Engineering, A4013001. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000871
  • Cho, I. H., and K. A. Porter. 2014b. Multilayered grouping parallel algorithm for multiple-level multiscale analysis. International Journal for Numerical Methods in Engineering 100 (12): 914–32. doi: 10.1002/nme.4791.
  • Cho, I. H., and K. A. Porter. 2015. Three-stage multiscale nonlinear dynamic analysis platform for tackling building classes. Earthquake Spectra 31 (2): 1021–42. doi: 10.1193/092712EQS293M.
  • Cho, I. H., and K. A. Porter. 2016. Modeling building classes using moment matching. Earthquake Spectra 32 (1): 285–301. doi: 10.1193/071712EQS239M.
  • Cho, K. 2004. An experimental and analytical study on the seismic behavior of RC piers using high-strength concrete and high-strength rebars. M.S. thesis, Seoul National Univ., Seoul, South Korea.
  • Chopra, A. K. 2001. Dynamics of structures. Upper Saddle River, NJ: Prentice-Hall.
  • Concrete Coalition. 2003. The concrete coalition and the California Inventory Project: An estimate of the number of pre‐1980 concrete buildings in the state. CA: EERI.
  • Dazio, A., K. Beyer, and H. Bachmann. 2009. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls. Engineering Structures 31 (7): 1556–71. doi: 10.1016/j.engstruct.2009.02.018.
  • Deger, Z. T., and J. W. Wallace. 2015. Collapse assessment of the Alto Rio building in the 2010 Chile earthquake. Earthquake Spectra 31 (3): 1397–425. doi: 10.1193/060812EQS209M.
  • Dhakal, R., and K. Maekawa. 2002. Modeling for postyielding buckling of reinforcement. Journal of Structural Engineering-ASCE 128: 1139–47. doi: 10.1061/(ASCE)0733-9445(2002)128:9(1139).
  • Ile, N., and J. M. Reynouard. 2005. Behaviour of U-shaped walls subjected to uniaxial and biaxial cyclic lateral loading. Journal of Earthquake Engineering 9 (1): 67–94. doi: 10.1080/13632460509350534.
  • Kabeyasawa, T., S. Kato, M. Sato, H. Fukuyama, T. Kabeyasawa, M. Tani, Y. Kim, and Y. Hosokawa 2014. Effects of bi-directional lateral loading on the strength and deformability of reinforced concrete walls with/without boundary columns. Proceedings of the 10th NCEE, Anchorage, Alaska, EERI.
  • Kim, T. W., D. A. Foutch, and J. M. LaFAVE. 2005. A practical model for seismic analysis of reinforced concrete shear wall buildings. Journal of Earthquake Engineering 9 (3): 393–417. doi: 10.1080/13632460509350548.
  • Kim, Y., T. Kabeyasawa, T. Matsumori, and T. Kabeyasawa. 2012. Numerical study of a full-scale six-story reinforced concrete wall-frame structure tested at E-Defense. Earthquake Engineering & Structural Dynamics 41: 1217–39. doi: 10.1002/eqe.1179.
  • Lu, X., L. Xie, H. Guan, Y. Huang, and X. Lu. 2015. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design 98: 14–25. doi: 10.1016/j.finel.2015.01.006.
  • Martinelli, P., and F. C. Filippou. 2009. Simulation of the shaking table test of a seven‐story shear wall building. Earthquake Engineering & Structural Dynamics 38 (5): 587–607. doi: 10.1002/eqe.897.
  • Massone, L. M., P. Bonelli, R. Lagos, C. Lüders, J. Moehle, and J. W. Wallace. 2012. Seismic design and construction practices for RC structural wall buildings. Earthquake Spectra 28 (S1): S245–S256. doi: 10.1193/1.4000046.
  • Mazzoni, S., F. McKenna, M. Scott, and G. Fenves 2005. OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center.
  • Mehmood, T., P. Warnitchai, and P. Suwansaya. 2018. Seismic evaluation of tall buildings using a simplified but accurate analysis procedure. Journal of Earthquake Engineering 22 (3): 356–81. doi: 10.1080/13632469.2016.1224742.
  • Moehle, J. 2010. February 27, 2010, Chile earthquake reconnaissance team investigation report, Earthquake Engineering Research Institute (EERI).
  • Mulas, M. G., D. Coronelli, and L. Martinelli. 2007. Multi-scale modeling approach for the pushover analysis of existing RC shear walls-Part I: Model formulation. Earthquake Engineerings & Structural Dynamics 36: 1169–87. doi: 10.1002/eqe.677.
  • Mwafy, A. 2011. Assessment of seismic design response factors of concrete wall buildings. Earthquake Engineering and Engineering Vibration 10 (1): 115–27. doi: 10.1007/s11803-011-0051-7.
  • Okawa, I., T. Kashima, S. Koyama, and M. Iiba. 2013. Recorded responses of building structures during the 2011 Tohoku-Oki earthquake with some implications for design practice. Earthquake Spectra 29 (S1): S245–S264. doi: 10.1193/1.4000130.
  • Okazaki, T., D. G. Lignos, M. Midorikawa, J. M. Ricles, and J. Love. 2013. Damage to steel buildings observed after the 2011 Tohoku-Oki earthquake. Earthquake Spectra 29 (S1): S219–S243. doi: 10.1193/1.4000124.
  • Orakal, K., and J. W. Wallace. 2006. Flexural modeling of reinforced concrete shear walls – Experimental verification. ACI Structural Journal 103 (2): 196–206.
  • Palermo, D., F. J. Vecchio, and H. Solanki. 2002. Behavior of three-dimensional reinforced concrete shear walls. ACI Structural Journal 99 (1): 81–89.
  • Parra, P. F., and J. P. Moehle 2014. Lateral buckling in reinforced concrete walls. Proceedings of the 10th NCEE, Anchorage, Alaska, EERI.
  • PEER Ground Motion Database. 2011. Berkeley, CA: Pacific Earthquake Engineering Research (PEER) Center. http://peer.berkeley.edu/peer_ground_motion_database/site
  • Pégon, P., C. Plumier, A. Pinto, J. Molina, P. Gonzalez, P. C. Tognoli, and O. Hubert 2000. U-shaped walls: Description of the experimental set-up. TMR-ICONS-TOPIC5, JRC Ispra, Italy, 23.
  • Perotti, F., A. De Amici, and P. Venturini. 1996. Numerical analysis and design implications of the seismic behavior of one-story steel bracing systems. Engineering Structures 18 (2): 162–78. doi: 10.1016/0141-0296(95)00004-6.
  • Porter, K. A., and I. H. Cho 2013. Characterizing a building class via key features and index buildings for class-level vulnerability functions. 11th International Conference on Structural Safety & Reliability (ICOSSAR), Columbia University, New York, USA.
  • Rahul, S. D. 2010. An efficient coarse grained parallel algorithm for global-local multiscale computation on massively parallel systems. International Journal for Numerical Methods in Engineering 82: 379–402. doi: 10.1002/nme.2776.
  • Reinhardt, H. W. 1984. Fracture mechanics of an elastic softening material like concrete. Heron 29 (2): 1–42.
  • Reynouard, J. M., and M. N. Fardis eds. 2001. Shear wall structures. Cafeel-Ecoest Thematic Report No. 5, gen. eds. R. T. Severn and R. Bairrao. ( LNEC, ISBN 972-49-1891-2), September, 240.
  • Rodriguez, M. E., Botero, J. C., and Villa, J., 1999. Cyclic stress-strain behavior of reinforcing steel including effect of buckling. Journal of Structural Engineering 125 (6): 605–612.
  • SAP2000. 2000. Integrated Software for Structural Analysis and Design, Computers and Structures Inc., Berkeley, CA: Computer and Structures, Inc.
  • Scott, B. D., R. Park, and M. J. N. Priestley 1980. Stress-strain relationships for confined concrete: Rectangular sections. Rep. No. 80-6, Dept. of Civil Engineering, Univ. of Canterbury, Christchurch, New Zealand.
  • SMART2013. 2013. Seismic design and best-estimate methods assessment for reinforced concrete buildings subjected to torsion and non-linear effects. Oxand, France: CEA.
  • Song, C., S. Pujol, and A. Lepage. 2012. The collapse of the Alto Río building during the 27 February 2010 Maule, Chile, earthquake. Earthquake Spectra 28 (S1): S301–S334. doi: 10.1193/1.4000036.
  • Song, I., I. H. Cho, and R. K. Wong. 2020. An advanced statistical approach to data-driven earthquake engineering. Journal of Earthquake Engineering 24 (8): 1245–69. doi: 10.1080/13632469.2018.1461713.
  • Sullivan, T. J., D. Saborio-Romano, G. J. O’Reilly, D. P. Welch, and L. Landi. 2018. Simplified pushover analysis of moment resisting frame structures. Journal of Earthquake Engineering 1–28. doi: 10.1080/13632469.2018.1528911.
  • Taucer, F., E. Spacone, and F. C. Filippou, 1991. A fiber beam-column element for seismic response analysis of reinforced concrete structures. UCB/EERC-91/17.
  • Taylor, C. P., P. A. Cote, and J. W. Wallace. 1998. Design of slender reinforced concrete walls with openings. ACI Structural Journal 95 (4): 420–33.
  • Thomsen IV, J. H., and J. W. Wallace. 2004. Displacement-based design of slender reinforced concrete structural walls – Experimental verification. Journal of Structural Engineering 130 (4): 618–30. doi: 10.1061/(ASCE)0733-9445(2004)130:4(618).
  • Thorenfeldt, E., A. Tomaszewicz, and J. J. Jensen 1987. Mechanical properties of high-strength concrete and applications in design. Proceedings of the Symp. Utilization of High-Strength Concrete, Stavanger, Norway.
  • Vecchio, F. J. 1999. Towards cyclic load modeling of reinforced concrete. ACI Structural Journal 96 (2): 193–202.
  • Wang, J. F., C. C. Lin, G. L. Lin, and C. H. Yang. 2013. Story damage identification of irregular buildings based on earthquake records. Earthquake Spectra 29: 963–85. doi: 10.1193/1.4000168.
  • Yang, T. Y., J. P. Moehle, Y. Bozorgnia, F. Zareian, and J. W. Wallace. 2012. Performance assessment of tall concrete core-wall building designed using two alternative approaches. Earthquake Engineering & Structural Dynamics 41 (11): 1515–31. doi: 10.1002/eqe.2219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.