194
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Preliminary Investigation of Aging Effects on Recycled Rubber Fiber Reinforced Bearings (RR-FRBs)

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 5407-5424 | Received 29 Jun 2020, Accepted 27 Dec 2020, Published online: 14 Jan 2021

References

  • AASHTO M251-06. 2016. Standard Specification for Plain and Laminated Elastomeric Bridge Bearings, American Association of State and Highway Transportation Officials.
  • Al-Anany, Y. M., N. C. Van Engelen, and M. J. Tait. 2017. Vertical and lateral behavior of unbonded fiber-reinforced elastomeric isolators. Journal of Composites for Construction 21 (5): 04017019. doi: 10.1061/(ASCE)CC.1943-5614.0000794.
  • American Concrete Institute (ACI) Committee 440. 2008. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures – ACI 440.2R-08. Farmington Hills, MI: ACI.
  • ASCE 7-16. 2016. Minimum design loads and associated criteria for buildings and other structures. Reston, Virginia 20191: American Society of Civil Engineers.
  • ASTM D 573-04. 2004. Test Method for Rubber-Deterioration in an Air Oven, American Society for Testing and Materials.
  • Calabrese, A. Analytical, numerical and experimental study of a novel low-cost base isolation system. PhD dis. http://www.fedoatd.unina.it/id/eprint/876. July 24th, 2013.
  • Calabrese, A., D. Losanno, A. Barjiani, M. Spizzuoco, and S. Strano. 2020. Effects of the long-term aging of Glass-Fiber Reinforced Bearings (FRBs) on the seismic response of a base-isolated residential building. Engineering Structures 221: 110735. doi: 10.1016/j.engstruct.2020.110735.
  • Calabrese, A., D. Losanno, M. Spizzuoco, S. Strano, and M. Terzo. 2019. Recycled Rubber Fiber Reinforced Bearings (RR-FRBs) as base isolators for residential buildings in developing countries: The demonstration building of Pasir Badak, Indonesia. Engineering Structures 192: 126–44. doi: 10.1016/j.engstruct.2019.04.076.
  • Calabrese, A., M. Spizzuoco, G. Serino, G. Della Corte, and G. Maddaloni. 2014. Shaking table investigation of a novel, low-cost, base isolation technology using recycled rubber. Structural Control & Health Monitoring 22 (1): 107–22. doi: 10.1002/stc.1663.
  • CEN. 2005. European Committee for Standardization, European Standard EN1337:3 Structural bearings - Part 3: Elastomeric bearings.
  • CEN. 2009. European Committee for Standardization, European Standard EN15129: Anti-seismic devices.
  • FEMA P-1050. 2015. NEHRP recommended seismic provisions for new buildings and other structures. Federal Emergency Management Agency, Washington
  • Gent, A. N. 2012. Engineering with rubber: How to design rubber components. Carl Hanser Verlag GmbH Co KG.
  • Hamaguchi, H., S. Aizawa, Y. Samejima, T. Kikuchi, S. Suzuki, and T. Yoshizawa. 2009. A study of aging effect on a rubber bearing after about twenty years in use. AIJ Journal of Technology and Design 15 (30): 393–98. doi: 10.3130/aijt.15.393.
  • Itoh, Y., H. Gu, K. Satoh, and Y. Kutsuna. 2006a. Experimental investigation on ageing behaviors of rubbers used for bridge bearings. Doboku Gakkai Ronbunshuu A 62 (1): 176–90. doi: 10.2208/jsceja.62.176.
  • Itoh, Y., H. Gu, K. Satoh, and Y. Yamamoto. 2006b. Long-term deterioration of high damping rubber bridge bearing. Structural Engineering/Earthquake Engineering 23 (2): 215s–227s. doi: 10.2208/jsceseee.23.215s.
  • JIS K 6251. 2017. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties, Japanese Standards Association (JSA).
  • Kelly, J. M. 2008. Analysis of the run-in effect in fiber-reinforced isolators under vertical load. Journal of Mechanics of Materials and Structures 3 (7): 1383–401. doi: 10.2140/jomms.2008.3.1383.
  • Kelly, J. M. 1999. Analysis of fiber-reinforced elastomeric isolators. Journal of Seismology and Earthquake Engineering 2 (1): 19–34.
  • Kelly, J. M., and A. Calabrese. 2012. Mechanics of fiber reinforced bearings. In Report No. PEER-2012/101. CA, USA.: Pacific Earthquake Engineering Research Center, University of California Berkeley.
  • Kelly, J. M., and D. Konstantinidis. 2011. Mechanics of rubber bearings for seismic and vibration isolation. USA: John Wiley & Sons.
  • Le Huy, M., and G. Evrard, 1999. Methodologies for lifetime predictions of rubber using Arrhenius and WLF models. Die Angewandte Makromolekulare Chemie
  • Losanno, D., A. Calabrese, I. E. Madera Sierra, M. Spizzuoco, J. Marulanda, P. Thomson, and G. Serino. 2020. Recycled versus natural-rubber fiber-reinforced bearings for base isolation: Review of the experimental findings. Journal of Earthquake Engineering 1–20. doi: 10.1080/13632469.2020.1748764.
  • Losanno, D., I. E. Madera Sierra, M. Spizzuoco, J. Marulanda, and P. Thomson. 2019. Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration. Composite Structures 212: 66–82. doi: 10.1016/j.compstruct.2019.01.026.
  • Losanno, D., M. Spizzuoco, and A. Calabrese. 2019. Bidirectional shaking table tests of unbonded recycled rubber fiber reinforced bearings (RR-FRBs). Structural Control & Health Monitoring 26 (9): e2386. doi: 10.1002/stc.2386.
  • Madera Sierra, I. E., D. Losanno, S. Strano, J. Marulanda, and P. Thomson. 2019. Development and experimental behavior of HDR seismic isolators for low-rise residential buildings. Engineering Structures 183: 894–906. doi: 10.1016/j.engstruct.2019.01.037.
  • Moon, B. Y., G. J. Kang, B. S. Kang, G. S. Kim, and J. M. Kelly. 2003. Mechanical properties of seismic isolation system with fiber-reinforced bearing of strip type. International Applied Mechanics 39 (10): 1231–39. doi: 10.1023/B:INAM.0000010377.92594.3c.
  • Nakauchi, H. 1992. Characterization of a 100-years-old rubber bearing by microanalytical methods. Journal of Applied Polymer Science. Applied Polymer Symposium 50: 369–75. doi: 10.1002/app.1992.070500030.
  • Nardone, F., M. Di Ludovico, F. J. de Caso y Basalo, A. Prota, and A. Nanni. 2012. Tensile behavior of epoxy based FRP composites under extreme service conditions. Composites Part B: Engineering 43 (3): 1468–74. doi: 10.1016/j.compositesb.2011.08.042.
  • NCHRP Report 449. 2001. National cooperative highway research program, elastomeric bridge bearings: recommended test methods. Transportation Research board — national research council. Washington D.C: National Academy Press.
  • Russo, G., and M. Pauletta. 2013. Sliding instability of fiber-reinforced elastomeric isolators in unbounded applications. Engineering Structures 48: 70–80. doi: 10.1016/j.engstruct.2012.08.031.
  • Russo, G., M. Pauletta, and A. Cortesia. 2013. A study on experimental shear behavior of fiber-reinforced elastomeric isolators with various fiber layouts, elastomers and aging conditions. Engineering Structures 52: 422–33. doi: 10.1016/j.engstruct.2013.02.034.
  • Spizzuoco, M., A. Calabrese, and G. Serino. 2014. Innovative low-cost recycled rubber–fiber reinforced isolator: Experimental tests and finite element analyses. Engineering Structures 76: 99–111. doi: 10.1016/j.engstruct.2014.07.001.
  • Toopchi-Nezhad, H., R. G. Drysdale, and M. J. Tait. 2009. Parametric Study on the Response of Stable Unbonded-Fiber Reinforced Elastomeric Isolators (SU-FREIs). Journal of Composite Materials 43 (15): 1569–87. doi: 10.1177/0021998308106322.
  • Toopchi-Nezhad, H., M. R. Ghotb, Y. M. Al-Anany, and M. J. Tait. 2019. Partially bonded fiber reinforced elastomeric bearings: Feasibility, effectiveness, aging effects, and low temperature response. Engineering Structures 179: 120–28. doi: 10.1016/j.engstruct.2018.10.043.
  • Toopchi-Nezhad, H., M. J. Tait, and R. G. Drysdale. 2007. Testing and modeling of square carbon fiber-reinforced elastomeric seismic isolators. Structural Control & Health Monitoring 15 (6): 876–900. doi: 10.1102/stc.225.
  • Toopchi-Nezhad, H., M. J. Tait, and R. G. Drysdale. 2008. Testing and Modeling of Square Carbon Fiber-Reinforced Elastomeric Seismic Isolators.”. Structural Control and Health Monitoring 15 (6): 876–900. doi: 10.1002/stc.225.
  • UNI ISO 188:2012. 2012. Gomma vulcanizzata o termoplastica - Prove di invecchiamento accelerato e di resistenza al calore (in italian), Ente Italiano di Normazione (UNI)
  • Vaiana, N., S. Sessa, F. Marmo, and L. Rosati. 2018. A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93 (3): 1647–69. doi: 10.1007/s11071-018-4282-2.
  • Vaiana, N., S. Sessa, F. Marmo, and L. Rosati. 2019a. An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196–212. doi: 10.1016/j.compstruct.2018.12.017.
  • Vaiana, N., S. Sessa, F. Marmo, and L. Rosati. 2019b. Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98 (4): 2879–901. doi: 10.1007/s11071-019-05022-5.
  • Watanabe, Y., A. Kato, G. Yoneda, and T. Hirotani, 1996. Aging effects of forty years old laminated rubber bearings. In Proc. 1st Aseismic and Resist Colloquium, JSCE, pp. 439–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.