384
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An Oblate Spheroid Base Isolator and Floating Surface Diaphragm for Seismic Protection of Liquid Storage Tank

& ORCID Icon
Pages 5447-5475 | Received 28 Apr 2020, Accepted 07 Jan 2021, Published online: 08 Feb 2021

References

  • Abaqus User’s Manual, Version 6.14. 2014. Dassault Systèmes Simulia Corporation. Providence, Rhode Island (RI), USA.
  • Buckle, I. G., and R. L. Mayes. 1990. Seismic isolation: History, application, and performance-a world view. Earthquake Spectra 6 (2): 161–201. doi: 10.1193/1.1585564.
  • Butterworth, J. W. 2006. Seismic response of a non-concentric rolling isolator system. Advances in Structural Engineering 9 (1): 39–54.
  • Calio, I., M. Marletta, and F. Vinciprova. 2003. Seismic response of multi-storey buildings base-isolated by friction devices with restoring properties. Computers & Structures 81 (28–29): 2589–99. doi: 10.1016/S0045-7949(03)00327-4.
  • Chung, L. L., C. Y. Yang, H. M. Chen, and L. Y. Lu. 2009. Dynamic behavior of nonlinear rolling isolation system. Structural Control & Health Monitoring 16 (1): 32–54. doi: 10.1002/stc.305.
  • Constantinou, M., A. Mokha, and A. Reinhorn. 1990. Teflon bearings in base isolation II: Modeling. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 116 (2): 455–74. doi: 10.1061/(ASCE)0733-9445(1990)116:2(455).
  • De-Angelis, M., R. Giannini, and F. Paolacci. 2010. Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests. Earthquake Engineering & Structural Dynamics 39 (4): 377–96.
  • Eurocode 8. 2006. Design of structures for earthquake resistance, Part 4: Silos, tanks and pipelines. Brussels, Belgium: European Committee for Standardization (ECS).
  • Ghaemmaghami, A. R., and M. R. Kianoush. 2010. Effect of wall flexibility on dynamic response of concrete rectangular tanks under horizontal and vertical ground motions. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 136 (4): 441–51. doi: 10.1061/(ASCE)ST.1943-541X.0000123.
  • Goudarzi, M. A., and S. R. Sabbagh-Yazdi. 2009. Numerical investigation on accuracy of mass spring models for cylindrical tanks under seismic excitation. International Journal of Civil Engineering 7 (3): 190–202.
  • Guerreiro, L., J. Azevedo, and A. H. Muhr. 2007. Seismic tests and numerical modeling of a rolling-ball isolation system. Journal of Earthquake Engineering 11 (1): 49–66. doi: 10.1080/13632460601123172.
  • Hamdan, F. H. 2000. Seismic behavior of cylindrical steel liquid storage tanks. Journal of Constructional Steel Research 53(3): 307–333.
  • Haroun, M. A. 1983. Vibration studies and test of liquid storage tanks. Earthquake Engineering & Structural Dynamics 11 (2): 179–206.
  • Haroun, M. A., and G. W. Housner. 1981. Seismic design of liquid storage tanks. Journal of the Technical Councils. American Society of Civil Engineers (ASCE) 107 (1): 191–207.
  • Harvey, P. S., Jr., G. Zehil, and H. P. Gavin. 2014. Experimental validation of a simplified model for rolling isolation system. Earthquake Engineering & Structural Dynamics 43 (7): 1067–88. doi: 10.1002/eqe.2387.
  • Harvey, P. S., Jr., and H. P. Gavin. 2013. The non-holonomic and chaotic nature of a rolling isolation system. Journal of Sound and Vibration 332 (14): 3535–51. doi: 10.1016/j.jsv.2013.01.036.
  • Harvey, P. S., Jr., and H. P. Gavin. 2015. Assessment of rolling isolation system using reduced order structural models. Engineering Structures 99: 708–25. doi: 10.1016/j.engstruct.2015.05.022.
  • Harvey, P. S., Jr., and K. C. Kelly. 2016. A review of rolling-type seismic isolation: Historical development and future directions. Engineering Structures 125: 521–31. doi: 10.1016/j.engstruct.2016.07.031.
  • Hosseini, M., and A. Soroor. 2011. Using orthogonal pairs of rollers on concave beds (OPRCB) a base isolation system - Part I: Analytical, experimental, and numerical studies of OPRCB isolators. The Structural Design of Tall and Special Buildings 20 (8): 928–50. doi: 10.1002/tal.568.
  • Hosseini, M., and A. Soroor. 2013. Using orthogonal pairs of rollers on concave beds (OPRCB) as a base isolation system - Part II: Application to multi-storey and tall buildings. The Structural Design of Tall and Special Buildings 22 (2): 192–216. doi: 10.1002/tal.671.
  • Hosseini, M., M. A. Goudarzi, and A. Soroor. 2017. Reduction of seismic sloshing in floating roof liquid storage tanks by using a Suspended Annular Baffle (SAB). Journal of Fluids and Structures 71: 40–55. doi: 10.1016/j.jfluidstructs.2017.02.008.
  • Housner, G. W. 1963. The dynamic behavior of water tanks. Bulletin of the Seismological Society of America 53 (2): 381–87.
  • Hwang, J. S., and T. Y. Hsu. 2000. Experimental study of isolated building under triaxial ground excitations. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 126 (8): 879–86. doi: 10.1061/(ASCE)0733-9445(2000)126:8(879).
  • Ibrahim, R. A. 2005. Liquid sloshing dynamics: Theory and applications. UK: Cambridge University Press.
  • Ibrahim, R. A., V. N. Pilipchuk, and T. Ikeda. 2001. Recent advances in liquid sloshing dynamics. Applied Mechanics Reviews 54 (2): 133–99. doi: 10.1115/1.3097293.
  • Ismail, M., and J. Rodellar. 2013. Near-fault isolation of cable-stayed bridges using RNC isolator. Engineering Structures 56: 327–42. doi: 10.1016/j.engstruct.2013.04.007.
  • Ismail, M., J. Rodellar, and F. Ikhouane. 2009. An innovative isolation bearing for motion-sensitive equipment. Journal of Sound and Vibration 326 (3–5): 503–21. doi: 10.1016/j.jsv.2009.06.022.
  • Ismail, M., J. Rodellar, and F. Ikhouane. 2010. An innovative isolation device for aseismic design. Engineering Structures 32 (4): 1168–83. doi: 10.1016/j.engstruct.2009.12.043.
  • Ismail, M., J. Rodellar, and J. R. Casas. 2016. Seismic behavior of RNC-isolated bridges: A comparative study under near-fault, long-period, and pulse-like ground motions. Advances in Materials Science and Engineering 2016 Article ID 1897045: 18. doi:10.1155/2016/1897045.
  • Jaiswal, O. R., D. C. Rai, and S. K. Jain. 2007. Review of seismic codes on liquid-containing tanks. Earthquake Spectra 23 (1): 239–60. doi: 10.1193/1.2428341.
  • Jangid, R. S. 1995. Seismic response of structures isolated by free rolling rods. European Earthquake Engineering IX: 3–11.
  • Jangid, R. S. 2000. Stochastic seismic response of structures isolated by rolling rods. Engineering Structures 22 (8): 937–46. doi: 10.1016/S0141-0296(99)00041-3.
  • Jangid, R. S., and T. K. Datta. 1995. Seismic behavior of base-isolated buildings: A state-of-the-art-review. Proceedings of the Institution of Civil Engineers - Structures and Buildings 110 (2): 186–203. doi: 10.1680/istbu.1995.27599.
  • Jiang, Y., Z. Zhao, R. Zhang, D. De Domenico, and C. Pan. 2020. Optimal design based on analytical solution for storage tank with inerter isolation system. Soil Dynamics and Earthquake Engineering 129: 105924. doi: 10.1016/j.soildyn.2019.105924.
  • Kaplan, H., and A. Seireg. 2001. Optimal design of a base-isolated system for high-rise steel structure. Earthquake Engineering & Structural Dynamics 30 (2): 287–302. doi: 10.1002/1096-9845(200102)30:2<287::AID-EQE13>3.0.CO;2-J.
  • Kelly, J. M. 1986. Aseismic base isolation: Review and bibliography. Soil Dynamics and Earthquake Engineering 5 (4): 202–16. doi: 10.1016/0267-7261(86)90006-0.
  • Kesti, M. G., W. Mowrtage, and M. Erdik. 2010. Earthquake risk reduction of structures by a low-cost base isolation device: Experimental study on BNC bearings. In Proceeding of the 14th European Conference on Earthquake Engineering (14ECEE), Ohrid, Macedonia, 30 August- 3September.
  • Koh, C. G., M. Luo, M. Gao, and W. Bai. 2013. Modeling of liquid sloshing with constrained floating baffle. Computers & Structures 122: 270–79. doi: 10.1016/j.compstruc.2013.03.018.
  • Lee, G. C., and Z. Liang. 2003. A sloping surface roller bearing and its lateral stiffness measurement Proceeding of the 19th US-Japan Bridge Engineering Workshop, Tsukuba Science City, Japan, 27-29 October.
  • Liaw, T. C., Q. L. Tian, and Y. K. Cheung. 1988. Structures on sliding base subjected to horizontal and vertical motions. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 114 (9): 2119–29. doi: 10.1061/(ASCE)0733-9445(1988)114:9(2119).
  • Lin, B. C., and I. G. Tadjbakhsh. 1986. Effect of vertical motion on friction driven systems. Earthquake Engineering & Structural Dynamics 14 (4): 609–22. doi: 10.1002/eqe.4290140409.
  • Lin, T. W., C. C. Chern, and C. C. Hone. 1995. Experimental study of base isolation by free rolling rods. Earthquake Engineering & Structural Dynamics 24 (12): 1645–50. doi: 10.1002/eqe.4290241207.
  • Lin, T. W., and C. C. Hone. 1993. Base isolation by free rolling rods under basement. Earthquake Engineering & Structural Dynamics 22 (3): 261–73. doi: 10.1002/eqe.4290220307.
  • Londhe, Y. B., and R. S. Jangid. 1998. Effectiveness of elliptical rolling rods for base isolation. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 124 (4): 469–72.
  • Londhe, Y. B., and R. S. Jangid. 1999. Dynamic response of structures supported on elliptical rolling rods. Structural Mechanics and Earthquake Engineering, Japanese Society of Civil Engineers (JSCE) 16 (1): 11–20.
  • Lu, L. Y., and C. C. Hsu. 2013. Experimental study of variable-frequency rocking bearings for near-fault seismic isolation. Engineering Structures 46: 116–29. doi: 10.1016/j.engstruct.2012.07.013.
  • Luo, H., R. Zhang, and D. Weng. 2016. Mitigation of liquid sloshing in storage tanks by using a hybrid control method. Soil Dynamics and Earthquake Engineering 90: 183–95. doi: 10.1016/j.soildyn.2016.08.037.
  • Mackerle, J. 1999. Fluid-structure problems, finite element and boundary element approaches: A bibliography (1995-1998). Finite Elements in Analysis and Design 31 (3): 231–40. doi: 10.1016/S0168-874X(98)00065-1.
  • Malhotra, P. K. 1997a. New methods for seismic isolation of liquid-storage tanks. Earthquake Engineering & Structural Dynamics 26 (8): 839–47. doi: 10.1002/(SICI)1096-9845(199708)26:8<839::AID-EQE679>3.0.CO;2-Y.
  • Malhotra, P. K. 1997b. Method for seismic base isolation of liquid storage tanks. Journal of Structural Engineering. American Society of Civil Engineers (ASCE) 123 (1): 113–16.
  • Malhotra, P. K., and A. S. Veletsos. 1994. Uplifting response of unanchored liquid storage tanks. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 120 (12): 3489–505. doi: 10.1061/(ASCE)0733-9445(1994)120:12(3489).
  • Malhotra, P. K., T. Wenk, and M. Wieland. 2000. Simple procedure for seismic analysis of liquid storage tanks. Structural Engineering International, International Association for Bridge and Structural Engineering (IABSE), Zurich, Switzerland 10 (3): 197–201.
  • Matsagar, V., N. Ummer, and A. Rawat. 2016. Base isolation device for earthquake resistant structures. The Patent Office Journal, India 22: 21038. http://www.ipindia.nic.in/writereaddata/Portal/IPOJournal/1_346_1/part1.pdf.
  • Matsagar, V. A., and R. S. Jangid. 2004. Influence of isolator characteristics on the response of base-isolated structures. Engineering Structures 26 (12): 1735–49. doi: 10.1016/j.engstruct.2004.06.011.
  • Moslemi, M., and M. R. Kianoush. 2012. Parametric study on dynamic behavior of cylindrical ground-supported tanks. Engineering Structures 42: 214–30. doi: 10.1016/j.engstruct.2012.04.026.
  • Muhr, A. H., M. Sulong, and A. G. Thomas. 1997. Rolling-ball rubber layer isolators. Journal of Natural Rubber Research 12 (4): 199–214.
  • Ormeno, M., T. Larkin, and N. Chouw. 2015. Evaluation of seismic ground motion scaling procedures for linear time-history analysis of liquid storage tanks. Engineering Structures 102: 266–77. doi: 10.1016/j.engstruct.2015.08.024.
  • Ou, Y. C., J. Song, and G. C. Lee. 2010. A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges. Earthquake Engineering & Structural Dynamics 39 (5): 541–59.
  • Ozdemir, Z., M. Souli, and Y. M. Fahjan. 2010. Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks. Engineering Structures 32 (2): 409–23. doi: 10.1016/j.engstruct.2009.10.004.
  • Panchal, V. R., and D. P. Soni. 2014. Seismic behavior of isolated fluid storage tanks: A state-of-the-art review. KSCE Journal of Civil Engineering, Korean Society of Civil Engineers (KSCE) 18 (4): 1097–104.
  • Panchal, V. R., and R. S. Jangid. 2011. Seismic response of liquid storage steel tanks with variable frequency pendulum isolator. KSCE Journal of Civil Engineering, Korean Society of Civil Engineers (KSCE) 15 (6): 1041–55.
  • Pranesh, M., and R. Sinha. 2000. VFPI: An isolation device for aseismic design. Earthquake Engineering & Structural Dynamics 29 (5): 603–27. doi: 10.1002/(SICI)1096-9845(200005)29:5<603::AID-EQE927>3.0.CO;2-W.
  • Rawat, A., N. Ummer, and V. A. Matsagar. 2018. Performance of bi-directional elliptical rolling rods for base isolation of buildings under earthquakes. Advances in Structural Engineering 21 (5): 675–93. doi: 10.1177/1369433217726896.
  • Rawat, A., V. Mittal, T. Chakraborty, and V. A. Matsagar. 2019. Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and Euler-Lagrange methods. Thin-Walled Structures 134: 333–46. doi: 10.1016/j.tws.2018.10.016.
  • Rawat, A., V. A. Matsagar, and A. K. Nagpal. 2015a. Coupled acoustic-structure interaction in cylindrical liquid storage tank subjected to bi-directional excitation. Advances in Structural Engineering: Dynamics II: 1155–66. doi: 10.1007/978-81-322-2193-7_90.
  • Rawat, A., V. A. Matsagar, and A. K. Nagpal. 2015b. Finite element simulation of cylindrical liquid storage tank under tri-directional components of earthquake. Journal of Structural Engineering, Structural Engineering Research Centre (SERC) 42 (1): 28–39.
  • Rawat, A., V. A. Matsagar, and A. K. Nagpal. 2019. Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach. Soil Dynamics and Earthquake Engineering 119: 196–219. doi: 10.1016/j.soildyn.2019.01.005.
  • Rawat, A., V. A. Matsagar, and A. K. Nagpal. 2020. Seismic analysis of steel cylindrical liquid storage tank using coupled acoustic-structural finite element method for fluid-structure interaction. International Journal of Acoustics and Vibration 25 (1): 27–40. doi: 10.20855/ijav.2020.25.11499.
  • Ruiz, R. O., D. Lopez-Garcia, and A. A. Taflanidis. 2015. An efficient computational procedure for the dynamic analysis of liquid storage tanks. Engineering Structures 85: 206–18. doi: 10.1016/j.engstruct.2014.12.011.
  • Saha, S. K., K. Sepahvand, V. A. Matsagar, A. K. Jain, and S. Marburg. 2013. Stochastic analysis of base-isolated liquid storage tanks with uncertain isolator parameters under random excitation. Engineering Structures 57: 465–74. doi: 10.1016/j.engstruct.2013.09.037.
  • Saha, S. K., K. Sepahvand, V. A. Matsagar, A. K. Jain, and S. Marburg. 2016. Fragility analysis of base-isolated liquid storage tanks under random sinusoidal base excitation using generalized polynomial chaos expansion-based simulation. Journal of Structural Engineering, American Society of Civil Engineers (ASCE) 142 (10): 04016059-1-12. doi: 10.1061/(ASCE)ST.1943-541X.0001518.
  • Saha, S. K., V. A. Matsagar, and A. K. Jain. 2015. Reviewing dynamic analysis of base-isolated cylindrical liquid storage tanks under near-fault earthquakes. The IES Journal Part A: Civil and Structural Engineering 8 (1): 41–61. doi: 10.1080/19373260.2014.979518.
  • Scheaua, F. 2016. Isolation system model subjected to random vibrations. In Proceeding of the International Conference on Interdisciplinary Studies (ICIS 2016), Chapter 7, Book Edited by Valentina Mihaela Pomazan, Croatia, Publisher Intech, 3 November.
  • Seo, K. S., J. C. Lee, K. S. Bang, and H. S. Han 2004. Shock absorbing evaluation of the rigid polyurethane foam and Styrofoam applied to a small transportation package. In Proceeding of the 14th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2004), Berlin, Germany, September 20-24, Paper no. 240.
  • Shakib, H., and A. Fuladgar. 2003. Response of pure-friction sliding structures to three components of earthquake excitation. Computers & Structures 81 (4): 189–96. doi: 10.1016/S0045-7949(02)00444-3.
  • Shrimali, M. K., and R. S. Jangid. 2002a. Seismic response of liquid storage tanks isolated by sliding bearings. Engineering Structures 24 (7): 909–12. doi: 10.1016/S0141-0296(02)00009-3.
  • Shrimali, M. K., and R. S. Jangid. 2002b. A comparative study of performance of various isolation systems for liquid storage tanks. International Journal of Structural Stability and Dynamics 2 (4): 573–91. doi: 10.1142/S0219455402000725.
  • Spritzer, J. M., and S. Guzey. 2017. Review of API 650 Annex E: Design of large steel welded aboveground storage tanks excited by seismic loads. Thin-Walled Structures 112: 41–65. doi: 10.1016/j.tws.2016.11.013.
  • Sreekala, R., A. M. Prasad, and K. Muthumani. 2011. An investigation into the liquid sloshing characteristics of ground anchored tanks during lateral vibration. International Journal of Emerging Multidisciplinary Fluid Sciences 3 (2–3): 99–116. doi: 10.1260/1756-8315.3.2-3.99.
  • Su, L., and G. Ahmedi. 1988. Response of frictional base isolation systems to horizontal-vertical random earthquake excitations. Probabilistic Engineering Mechanics 3 (1): 12–21.
  • Tsai, M. H., K. C. Chang, and S. Y. Wu. 2006. Seismic isolation of a scaled bridge model using rolling-type bearings. In Proceeding of the 4th International Conference on Earthquake Engineering, Taipei, Taiwan, 12-13 October, Paper No. 181.
  • Tsai, M. H., S. Y. Wu, K. C. Chang, and G. C. Lee. 2007. Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings. Engineering Structures 29 (5): 694–702. doi: 10.1016/j.engstruct.2006.05.025.
  • Veletsos, A. S. 1973. Seismic effects in flexible liquid storage tanks. In Proceeding of the 5th World Conference on Earthquake Engineering (5WCEE), Rome, Italy, 25-29 June, 1, 630–39.
  • Wang, S. J., C. H. Yu, W. C. Lin, J. S. Hwang, and K. C. Chang. 2017. A generalized analytical model for sloped rolling-type seismic isolators. Engineering Structures 138: 434–46. doi: 10.1016/j.engstruct.2016.12.027.
  • Wang, Y. P., M. C. Teng, and K. W. Chung. 2001. Seismic isolation of rigid cylindrical tanks using friction pendulum bearings. Earthquake Engineering & Structural Dynamics 30 (7): 1083–99. doi: 10.1002/eqe.56.
  • Wei, B., P. Wang, L. Weian, M. Yang, and L. Jiang. 2016b. Impact of the concave distribution of rolling friction coefficient on the seismic isolation performance of a spring-rolling system. International Journal of Non-linear Mechanics 83 (1): 65–77. doi: 10.1016/j.ijnonlinmec.2016.04.001.
  • Wei, B., P. Wang, M. Yang, and L. Jiang. 2017. Seismic response of rolling isolation systems with concave friction distribution. Journal of Earthquake Engineering 21 (2): 325–42. doi: 10.1080/13632469.2016.1157530.
  • Wei, B., P. Wang, X. He, and L. Jiang. 2016a. Seismic response of spring-damper-rolling systems with concave friction distribution. Earthquakes and Structures 11 (1): 25–43. doi: 10.12989/eas.2016.11.1.025.
  • Yang, C. Y., C. H. Hsieh, L. L. Chung, H. M. Chen, and L. Y. Wu. 2012. Effectiveness of an eccentric rolling isolation system with friction damping. Journal of Vibration and Control 18 (14): 2149–63. doi: 10.1177/1077546311428633.
  • Zhang, R., Z. Zhao, and C. Pan. 2018. Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks. Soil Dynamics and Earthquake Engineering 114: 639–49. doi: 10.1016/j.soildyn.2018.07.036.
  • Zhou, Q., X. Lu, Q. Wang, D. Feng, and Q. Yao. 1998. Dynamic analysis of structures base-isolated by a ball system with restoring property. Earthquake Engineering & Structural Dynamics 27 (8): 773–91. doi: 10.1002/(SICI)1096-9845(199808)27:8<773::AID-EQE749>3.0.CO;2-A.
  • Zienkiewicz, O. C., and R. L. Taylor. 2000. The finite element method, volume 1: The basis. 5th ed. Oxford, UK: Butterworth-Heinemann.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.