455
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Fragility Analysis for Subway Station Using Artificial Neural Network

&
Pages 6724-6744 | Received 01 Feb 2021, Accepted 28 Apr 2021, Published online: 22 Jun 2021

References

  • ABAQUS Users Manual V. 6.12-1. 2011. Providence, RI: Dassault Systemes Simulia Corp.
  • Calabrese, A., and C. G. Lai. 2013. Fragility functions of blockwork wharves using artificial neural networks. Soil Dynamics and Earthquake Engineering 52:88–102. doi:10.1016/j.soildyn.2013.05.002.
  • Chen, Z. Y., W. Chen, and W. Zhang. 2014. Seismic performance evaluation of multi-story subway structure based on pushover analysis. Advances in Soil Dynamics and Foundation Engineering: Geoshanghai International Congress. Shanghai, China, 444–54.
  • Chen, Z. Y., and Z. Q. Liu. 2019. Stochastic seismic lateral deformation of a multi-story subway station structure based on the probability density evolution method. Tunnelling and Underground Space Technology 94:103114. doi:10.1016/j.tust.2019.103114.
  • Du, A., and J. E. Padgett. 2020. Investigation of multivariate seismic surrogate demand modeling for multi-response structural systems. Engineering Structures 207:110210. doi:10.1016/j.engstruct.2020.110210.
  • Ferrario, E., N. Pedroni, E. Zio, and F. Lopez-Caballero. 2017. Bootstrapped Artificial Neural Networks for the seismic analysis of structural systems. Structural Safety 67:70–84. doi:10.1016/j.strusafe.2017.03.003.
  • Ghosh, S., and S. Chakraborty. 2020. Seismic fragility analysis of structures based on Bayesian linear regression demand models. Probabilistic Engineering Mechanics 61:103081. doi:10.1016/j.probengmech.2020.103081.
  • He, Z. M., and Q. J. Chen. 2019. Vertical seismic effect on the seismic fragility of large-space underground structures. Advances in Civil Engineering 2019:9650294. doi:10.1155/2019/9650294.
  • Huh, J., Q. Tran, A. Haldar, I. Park, and J. H. Ahn. 2017. Seismic vulnerability assessment of a shallow two-story underground RC box structure. Applied Sciences 7 (7):735. doi:10.3390/app7070735.
  • Javidan, M. M., H. Kang, D. Isobe, and J. Kim. 2018. Computationally efficient framework for probabilistic collapse analysis of structures under extreme actions. Engineering Structures 172:440–52. doi:10.1016/j.engstruct.2018.06.022.
  • Karimi-Moridani, K., P. Zarfam, and M. Ghafory-Ashtiany. 2020. A novel and efficient hybrid method to develop the fragility curves of horizontally curved bridges. KSCE Journal of Civil Engineering 24 (2):508–24. doi:10.1007/s12205-020-0217-9.
  • Kiani, J., C. Camp, and S. Pezeshk. 2019. On the application of machine learning techniques to derive seismic fragility curves. Computers & Structures 218:108–22. doi:10.1016/j.compstruc.2019.03.004.
  • Kim, T., J. Song, and O. Kwon. 2020. Probabilistic evaluation of seismic responses using deep learning method. Structural Safety 84:101913. doi:10.1016/j.strusafe.2019.101913.
  • Lei, Y., Y. X. Zhang, J. N. Mi, W. F. Liu, and L. J. Liu. 2020. Detecting structural damage under unknown seismic excitation by deep convolutional neural network with wavelet-based transmissibility data. Structural Healthy Monitoring 147592172092308. doi:10.1177/1475921720923081.
  • Li, W. T., and Q. J. Chen. 2018. Seismic performance and failure mechanism of a subway station based on nonlinear finite element analysis. KSCE Journal of Civil Engineering 22 (2):765–76. doi:10.1007/s12205-017-1840-y.
  • Liu, T., Z. Y. Chen, Y. Yuan, and X. Y. Shao. 2016. Fragility analysis of a subway station structure by incremental dynamic analysis. Advances in Structural Engineering 20 (7):1111–24. doi:10.1177/1369433216671319.
  • Liu, Z., and Z. Zhang. 2018. Artificial neural network based method for seismic fragility analysis of steel frames. KSCE Journal of Civil Engineering 22 (2):708–17. doi:10.1007/s12205-017-1329-8.
  • Liu, Z. J., B. Zeng, and L. Q. Wu. 2015. Simulation of non-stationary ground motion by spectral representation and random functions. Journal of Vibration Engineering 28 (3):411–17. (In Chinese).
  • Liu, Z. Q., Z. Y. Chen, S. B. Liang, and C. X. Li. 2020. Isolation mechanism of a subway station structure with flexible devices at column ends obtained in shaking-table tests. Tunnelling and Underground Space Technology 98:103328. doi:10.1016/j.tust.2020.103328.
  • Lu, C. C., and J. H. Hwang. 2019. Nonlinear collapse simulation of Daikai Subway in the 1995 Kobe earthquake: Necessity of dynamic analysis for a shallow tunnel. Tunnelling and Underground Space Technology 87:78–90. doi:10.1016/j.tust.2019.02.007.
  • Mangalathu, S., G. Heo, and J. Jeon. 2018. Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes. Engineering Structures 162:166–76. doi:10.1016/j.engstruct.2018.01.053.
  • Mangalathu, S., and J. Jeon. 2020. Ground motion-dependent rapid damage assessment of structures based on wavelet transform and image analysis techniques. Journal of Structural Engineering 146 (11):0402023011. doi:10.1061/(ASCE)ST.1943-541X.0002793.
  • Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2010. Code for seismic design of buildings. GB 50011-2010. Beijing, China: China Architecture & Building Press. (In Chinese).
  • Pang, Y. T., X. Z. Dang, and W. C. Yuan. 2014. An artificial neural network based method for seismic fragility analysis of highway bridges. Advances in Structural Engineering 17 (3):413–28. doi:10.1260/1369-4332.17.3.413.
  • Penzien, J. 2000. Seismically induced racking of tunnel linings. Earthquake Engineering & Structural Dynamics 29 (5):683–91. doi:10.1002/(SICI)1096-9845(200005)29:5<683::AID-EQE932>3.0.CO;2-1.
  • Shang, X. Y., X. B. Li, A. Morales-Esteban, and G. H. Chen. 2017. Improving microseismic event and quarry blast classification using artificial neural networks based on principal component analysis. Soil Dynamics and Earthquake Engineering 99:142–49. doi:10.1016/j.soildyn.2017.05.008.
  • Shen, Z. Y., P. Pan, D. Zhang, and S. Huang. 2020. Rapid structural safety assessment using a deep neural network. Journal of Earthquake Engineering 1–17. doi:10.1080/13632469.2020.1785586.
  • Song, X. 2020. Parameterized fragility analysis of steel frame structure subjected to blast loads using Bayesian logistic regression method. Structural Safety 87:102000. doi:10.1016/j.strusafe.2020.102000.
  • Tavazo, H. A., and A. Ranjbaran. 2017. Fragility analysis of 3D reinforced concrete frames based on endurance time method with derived standard deviation. Journal of Earthquake and Tsunami 11 (4):1750011. doi:10.1142/S1793431117500117.
  • Tongji University. 2009. Code of Shanghai construction engineering: Code for seismic design of subway structures. DG/TJ08-2064-2009. Shanghai, China. (In Chinese)
  • Vijayashanthar, V., J. Qiao, Z. Zhu, P. Entwistle, and G. Yu. 2018. Modeling fecal indicator bacteria in urban waterways using artificial neural networks. Journal of Environmental Engineering 144 (6):05018003. doi:10.1061/(ASCE)EE.1943-7870.0001377.
  • Wang, W. L., T. T. Wang, J. J. Su, C. H. Lin, C. R. Seng, and T. H. Huang. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake. Tunnelling and Underground Space Technology 16 (3):133–50. doi:10.1016/S0886-7798(01)00047-5.
  • Wang, Z., B. Gao, Y. Jiang, and S. Yuan. 2009. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E: Technological Sciences 52 (2):546–58. doi:10.1007/s11431-009-0054-z.
  • Wang, Z., I. Zentner, and E. Zio. 2018. A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks. Nuclear Engineering and Design 338:232–46. doi:10.1016/j.nucengdes.2018.08.016.
  • Wu, W. F., S. P. Ge, Y. Yuan, W. Q. Ding, and I. Anastasopoulos. 2020. Seismic response of subway station in soft soil: Shaking table testing versus numerical analysis. Tunnelling and Underground Space Technology 100:103389. doi:10.1016/j.tust.2020.103389.
  • Xu, Y. J., X. Z. Lu, Y. Tian, and Y. L. Huang. 2020. Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning. Journal of Earthquake Engineering 1–21. doi:10.1080/13632469.2020.1826371.
  • Zhong, Z. L., X. Y. Shen, Y. R. Hao, L. Y. Li, and X. L. Du. 2020. Seismic fragility analysis of two-story-three-span metro station structures based on IDA method. Chinese Journal of Geotechnical Engineering 42:916–24. (In Chinese). doi:10.11779/CJGE202005014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.