773
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Seismic Soil Liquefaction Mitigation Using Stone Columns for Pile-supported Wharves

, , , , , & show all
Pages 8229-8256 | Received 24 Feb 2021, Accepted 12 Sep 2021, Published online: 28 Oct 2021

References

  • Adalier, K., A. Elgamal, J. Meneses, and J. Baez. 2003. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering 23 (7): 571–84. doi: 10.1016/S0267-7261(03)00070-8.
  • Adaliera, K., and A. Elgamal. 2004. Mitigation of liquefaction and associated ground deformations by stone columns. Engineering Geology 72 (3–4): 275–91. doi: 10.1016/j.enggeo.2003.11.001.
  • Asgari, A., M. Oliaei, and M. Bagheri. 2013. Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques. Soil Dynamics and Earthquake Engineering 51: 77–96. doi: 10.1016/j.soildyn.2013.04.006.
  • Banayan-Kermani, A., K. Bargi, and H. Heidary-Torkamani. 2016. Seismic performance assessment of pile-supported wharves retrofitted by carbon fibre–reinforced polymer composite considering ageing effect. Advances in Structural Engineering 19 (4): 581–98. doi: 10.1177/1369433216630187.
  • Chung, R. M. 1996. The January 17, 1995 Hyogo-ken-Nanbu (Kobe) Earthquake: Performance of structures, lifelines, and fire protection systems. US Department of Commerce, Technology Administration, National Institute of Standards and Technology.
  • Cong, S. Y., L. Tang, X. Z. Ling, L. Geng, and J. C. Lu. 2021. Numerical analysis of liquefaction-induced differential settlement of shallow foundations on an island slope. Soil Dynamics and Earthquake Engineering 140: 106453. doi: 10.1016/j.soildyn.2020.106453.
  • De, F. R., G. Ferretti, S. Barani, G. Pepe, and A. Cevasco. 2017. On the role of stiff soil deposits on seismic ground shaking in western Liguria, Italy: Evidences from past earthquakes and site response. Engineering Geology 226: 172–83. doi: 10.1016/j.enggeo.2017.06.006.
  • Doran, B., J. H. Shen, and B. Akbas. 2015. Seismic evaluation of existing wharf structures subjected to earthquake excitation: Case study. Earthquake Spectra 3 (1177): 11.
  • Elgamal, A., J. Lu, and D. Forcellini. 2009. Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation. Journal of Geotechnical and Geoenvironmental Engineering 135 (11): 1672–82. doi: 10.1061/(ASCE)GT.1943-5606.0000137.
  • Elgamal, A., Z. Yang, E. Parra, and A. Ragheb. 2003. Modeling of cyclic mobility in saturated cohesionless soils. International Journal of Plasticity 19 (6): 883–905. doi: 10.1016/S0749-6419(02)00010-4.
  • Forcellini, D. 2019. Numerical simulations of liquefaction on an ordinary building during Italian (20 May 2012) earthquake. Bulletin of Earthquake Engineering 17 (9): 4797–823. doi: 10.1007/s10518-019-00666-5.
  • Forcellini, D. 2020. Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit. Soil Dynamics and Earthquake Engineering 133: 106108. doi: 10.1016/j.soildyn.2020.106108.
  • Forcellini, D. 2021. Analytical Fragility Curves of Pile Foundations with soil-Structure Interaction (SSI). Geosciences 11 (2): 66. doi: 10.3390/geosciences11020066.
  • Gao, S. F., J. X. Gong, and Y. F. Feng. 2021. Dynamic magnification factor of pile-supported wharf under horizontally Bi-directional ground motion. Journal of Earthquake Engineering 25 (1): 291 139–61. doi:10.1080/13632469.2018.1509808.
  • Geng, L., L. Tang, S. Y. Cong, X. Z. Ling, and J. Lu. 2016. Three-dimensional analysis of geosynthetic-encased granular columns for liquefaction mitigation. Geosynthetics International. doi: 10.1680/jgein.16.00014.
  • Green, R. A., S. M. Olson, B. R. Cox, G. J. Rix, E. Rathje, J. Bachhuber, J. French, S. Lasley, and N. Martin. 2011. Geotechnical aspects of failures at Port-au-Prince Seaport during the 12 January 2010 Haiti Earthquake. Earthquake Spectra 27 (1_suppl1): 43–65. doi: 10.1193/1.3636440.
  • Heidary-Torkamani, H., K. Bargi, R. Amirabadi, and N. J. McCllough. 2014. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil Dynamics and Earthquake Engineering 61-62: 92–106. doi: 10.1016/j.soildyn.2014.01.024.
  • Kamijo, N., H. Saito, K. Kusama, O. Kontani, and R. Nigbor. 2004. Seismic tests of a pile-supported structure in liquefiable sand using large-scale blast excitation. Nuclear Engineering and Design 228 (1–3): 367–76. doi: 10.1016/j.nucengdes.2003.06.029.
  • Liu, X., R. Wang, and J.-M. Zhang. 2018. Centrifuge shaking table tests on 4 × 4 pile groups in liquefiable ground. Acta Geotechnica 13 (6): 1405–18. doi: 10.1007/s11440-018-0699-5.
  • Madabhushi, S. P., J. I. Boksmati, and S. G. Torres. 2019. Modelling the behaviour of large gravity wharf structure under the effects of earthquake-induced liquefaction. Coastal Engineering Coastal Engineering 147: 107–14. doi: 10.1016/j.coastaleng.2019.02.010.
  • Martin, J. R., II, C. G. Olgun, C. W. Zobel, and H. T. Durgunoğlu. 2008. Soil Improvement for Mitigation of Damage During the 1999 Kocaeli Earthquake. Journal of Earthquake Engineering 12 (sup2): 211–21. doi: 10.1080/13632460802014063.
  • Mazzoni, S., F. McKenna, M. H. Scott, and G. L. Fenves 2006. OpenSees Command Language Manual. Pacific Earthquake Engineering Research (PEER) Center.
  • Mohasseb, S., N. Ghazanfari, M. Rostami, and S. Rostam. 2020. Effect of soil–pile–structure interaction on seismic design of tall and massive buildings through case studies. Transportation Infrastructure Geotechnology 7 (1): 13–45. doi: 10.1007/s40515-019-00086-7.
  • Pal, S., and K. Deb. 2019. Effect of clogging of stone column on drainage capacity during soil liquefaction. Soils and Foundations 59 (1): 196–207. doi: 10.1016/j.sandf.2018.10.005.
  • Papadimitriou, A., M.-E. Moutsopoulou, G. Bouckovalas, and A. Brennan 2007. Numerical investigation of liquefaction mitigation using gravel drains, Proceedings, 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece.
  • Papadimitriou, A. G., A. C. Vytiniotis, and G. D. Bouckovalas 2006. Equivalence between 2D and 3D numerical analyses of the seismic response of improved sites, Proceedings, 8th US National Conference on Earthquake Engineering, San Francisco, CA.
  • Rayamajhi, D., T. V. Nguyen, S. A. Ashford, R. W. Boulanger, J. Lu, A. Elgamal, and L. Shao. 2014. Numerical study of shear stress distribution for discrete columns in liquefiable soils. Journal of Geotechnical and Geoenvironmental Engineering 140 (3): 04013034. doi: 10.1061/(ASCE)GT.1943-5606.0000970.
  • Shafieezadeh, A., R. DesRoches, G. J. Rix, and S. D. Werner. 2012. Seismic performance of pile-supported wharf structures considering soil-structure interaction in liquefied soil. Earthquake Spectra 28 (2): 729–57. doi: 10.1193/1.4000008.
  • Song, S.-T., T.-F. Hu, and D.-J. Chiou. 2020. Influence of riverbed scour on the performance of bridges subjected to lateral seismic loads. Journal of Earthquake Engineering 1–32. doi: 10.1080/13632469.2020.1758851.
  • Su, L., J. Lu, A. Elgamal, and A. K. Arulmoli. 2017. Seismic performance of a pile-supported wharf: Three-dimensional finite element simulation. Soil Dynamics and Earthquake Engineering 95: 167–79. doi: 10.1016/j.soildyn.2017.01.009.
  • Su, L., H.-P. Wan, K. Bi, Y. Li, J. Lu, X.-Z. Ling, A. Elgamal, and A. K. Arulmoli. 2019a. Seismic fragility analysis of pile-supported wharves with the influence of soil permeability. Soil Dynamics and Earthquake Engineering 122: 211–27. doi: 10.1016/j.soildyn.2019.04.003.
  • Su, L., H. P. Wan, Y. Dong, D. M. Frangopol, and X. Z. Ling. 2018. Efficient uncertainty quantification of wharf structures under seismic scenarios using Gaussian process surrogate model. Journal of Earthquake Engineering 3: 1–22.
  • Su, L., H.-P. Wan, Y. Dong, D. M. Frangopol, and X.-Z. Ling. 2019b. Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction. Engineering Structures 186: 270–81. doi: 10.1016/j.engstruct.2019.02.022.
  • Su, L., H.-P. Wan, Y. Z. Luo, Y. Dong, F. J. Niu, J. C. Lu, X.-Z. Ling, A. Elgamal, and A. K. Arulmoli. 2020. Seismic performance assessment of a pile-supported wharf retrofitted with different slope strengthening strategies. Soil Dynamics and Earthquake Engineering 129: 105903. doi: 10.1016/j.soildyn.2019.105903.
  • Tang, L., S. Y. Cong, X. Z. Ling, J. C. Lu, and A. Elgamal. 2015. Numerical study on ground improvement for liquefaction mitigation using stone columns encased with geosynthetics. Geotextiles and Geomembranes 43 (2): 190–95. doi: 10.1016/j.geotexmem.2014.11.011.
  • Vytiniotis, A., A.-I. Panagiotidou, and A. J. Whittle. 2019. Analysis of seismic damage mitigation for a pile-supported wharf structure. Soil Dynamics and Earthquake Engineering 119: 21–35. doi: 10.1016/j.soildyn.2018.12.020.
  • Wang, Z. Q., C. J. Wu, T. T. Li, W. Xiao, H. Y. Wei, and H. Y. Qu. 2020. Experimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge column. Journal of Earthquake Engineering 1–22. doi: 10.1080/13632469.2020.1785356.
  • Yan, Z., Y. Chen, X. P. Sun, and H. Q. Zhang. 2019. Performance evaluation of an “m” shaped SCM wall in reinforcement of pile-supported wharf under yard heaped loads with centrifuge modelling. Engineering Structures 193: 308–23. doi: 10.1016/j.engstruct.2019.05.025.
  • Yang, Z., and A. Elgamal. 2002. Influence of permeability on liquefaction-induced shear deformation. Journal of Engineering Mechanics 128 (7): 720–29. doi: 10.1061/(ASCE)0733-9399(2002)128:7(720).
  • Yang, Z., A. Elgamal, and E. Parra. 2003. Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering 129 (12): 1119–27. doi: 10.1061/(ASCE)1090-0241(2003)129:12(1119).
  • Zhang, S., and G. Wang. 2013. Effects of near-fault and far-fault ground motions on nonlinear dynamic response and seismic damage of concrete gravity dams. Soil Dynamics and Earthquake Engineering 53: 217–29. doi: 10.1016/j.soildyn.2013.07.014.
  • Zhang, X. Y., L. Tang, X. W. Li, X. Z. Ling, and A. Chan. 2020. Effect of the combined action of lateral load and axial load on the pile instability in liquefiable soils. Soil Dynamics and Earthquake Engineering 205: 110074.
  • Zhang, X. Y., L. Tang, X. Z. Ling, A. H. C. Chan, and J. C. Lu. 2018. Using peak ground velocity to characterize the response of soil-pile system in liquefying ground. Engineering Geology 240: 62–73. doi: 10.1016/j.enggeo.2018.04.011.
  • Zou, Y.-X., J.-M. Zhang, and R. Wang. 2020. Seismic analysis of stone column improved liquefiable ground using a plasticity model for coarse-grained soil. Computers and Geotechnics 125: 103690. doi: 10.1016/j.compgeo.2020.103690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.