462
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Modelling and Seismic Response Analysis of Existing URM Structures. Part 2: Archetypes of Italian Historical Buildings

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1849-1874 | Received 05 Nov 2021, Accepted 01 Jun 2022, Published online: 23 Jun 2022

References

  • Abrams, D. P., O. AlShawa, P. B. Lourenço, and L. Sorrentino. 2017. Out-of-plane seismic response of unreinforced masonry walls: Conceptual discussion, research needs, and modeling issues. International Journal of Architectural Heritage 11 (1): 22–30.
  • Angiolilli, M., S. Lagomarsino, S. Cattari, and S. Degli Abbati. 2021. Seismic fragility assessment of existing masonry buildings in aggregate. Engineering Structures 247: 113218. doi: 10.1016/j.engstruct.2021.113218.
  • Angiolilli, M., M. E. Minkada, D. Di Domenico, S. Cattari, A. Belleri, and G. M. Verderame. 2022. Comparing the observed and numerically simulated seismic damage: A unified procedure for unreinforced masonry and reinforced concrete buildings. Journal of Earthquake Engineering. under review.
  • Asteris, P. G., M. P. Chronopoulos, C. Z. Chrysostomou, H. Varum, V. Plevris, N. Kyriakides, and V. Silva. 2014. Seismic vulnerability assessment of historical masonry structural systems. Engineering Structures 62: 118–34. doi: 10.1016/j.engstruct.2014.01.031.
  • Augenti, N., and F. Parisi. 2010. Learning from construction failures due to the 2009 L’Aquila, Italy, earthquake. Journal of Performance of Constructed Facilities 24 (6): 536–55. doi: 10.1061/(ASCE)CF.1943-5509.0000122.
  • Bracchi, S., S. Cattari, S. Degli Abbati, S. Lagomarsino, G. Magenes, M. Mandirola, S. Marino, A. Penna, and M. Rota. 2019. RINTC-E project: Towards the seismic risk of retrofitted existing Italian URM buildings. 7th ECCOMAS COMPDYN Conference, Crete, Greece.
  • Bracchi, S., A. Galasco, and A. Penna. 2021. A novel macroelement model for the nonlinear analysis of masonry buildings. Part 1: Axial and flexural behavior. Earthquake Engineering and Structural Dynamics 50 (8): 2233–52. doi: 10.1002/eqe.3445.
  • Bracchi, S., and A. Penna. 2021. A novel macroelement model for the nonlinear analysis of masonry buildings. Part 2: Shear behavior. Earthquake Engineering and Structural Dynamics 50 (8): 2212–32. doi: 10.1002/eqe.3444.
  • Brignola, A., S. Pampanin, and S. Podestà. 2012. Experimental evaluation of the in-plane stiffness of timber diaphragms. Earthquake Spectra 28 (4): 1687–709. doi: 10.1193/1.4000088.
  • Castellazzi, G., A. M. D’Altri, S. de Miranda, and F. Ubertini. 2017. An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Engineering Structures 132: 229–48. doi: 10.1016/j.engstruct.2016.11.032.
  • Cattari, S., S. Resemini, and S. Lagomarsino. 2008. Modelling of vaults as equivalent diaphragms in 3D seismic analysis of masonry buildings. In Structural analysis of historic construction: Preserving safety and significance, two volume set, ed. D. D'Ayala and E. Fodde, 537–44. London, UK: CRC Press.
  • Cattari, S., S. Degli Abbati, D. Ferretti, S. Lagomarsino, D. Ottonelli, and A. M. Tralli. 2012. The seismic behaviour of ancient masonry buildings after the earthquake in Emilia (Italy) on May 20th and 29th, 2012. Ingegneria Sismica 29 (2–3): 87–119.
  • Cattari, S., and S. Lagomarsino. 2013. Masonry structures, 151–200. In Developments in the field of displacement based seismic assessment, ed. T. Sullivan and G. M. Calvi, 524. Pavia, Italy: IUSS Press and EUCENTRE.
  • Cattari, S., D. Camilletti, S. Lagomarsino, S. Bracchi, M. Rota, and A. Penna. 2018. Masonry Italian code-conforming buildings. Part 2: Nonlinear modelling and time-history analysis. Journal of Earthquake Engineering 22 (sup 2): 2010–40. doi: 10.1080/13632469.2018.1541030.
  • Cattari, S., S. Degli Abbati, S. Alfano, A. Brunelli, F. Lorenzoni, and F. da Porto. 2021. Dynamic calibration and seismic validation of numerical models of URM buildings through permanent monitoring data. Earthquake Engineering and Structural Dynamics 50 (10): 2690–711. doi: 10.1002/eqe.3467.
  • Curioni, G. 1864. L’arte di fabbricare, ossia corso completo di istituzioni teorico-pratiche, in italian. Torino: Negro.
  • D’Ayala, D., and E. Speranza. 2003. Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthquake Spectra 19 (3): 479–509. doi: 10.1193/1.1599896.
  • D’Ayala, D. F., and S. Paganoni. 2011. Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bulletin of Earthquake Engineering 9 (1): 81–104. doi: 10.1007/s10518-010-9224-4.
  • De Felice, G. 2011. Out-of-plane seismic capacity of masonry depending on wall section morphology. International Journal of Architectural Heritage 5 (4–5): 466–82. doi: 10.1080/15583058.2010.530339.
  • Degli Abbati, S., S. Cattari, and S. Lagomarsino. 2018. Theoretically-based and practice-oriented formulations for the floor spectra evaluation. Earthquakes and Structures 15 (5): 565–81.
  • Degli Abbati, S., S. Cattari, and S. Lagomarsino. 2021. Validation of displacement-based procedures for rocking assessment of cantilever masonry elements. Structures 33: 3397–416. doi: 10.1016/j.istruc.2021.04.102.
  • Degli Abbati, S., P. Morandi, S. Cattari, and E. Spacone. 2022. On the reliability of the equivalent frame models: The case study of the permanently monitored Pizzoli’s town hall. Bulletin of Earthquake Engineering 20: 2187–217. doi: 10.1007/s10518-021-01145-6.
  • Dolce, M., M. Nicoletti, A. De Sortis, S. Marchesini, D. Spina, and F. Talanas. 2017. Osservatorio sismico delle strutture: The Italian structural seismic monitoring network. Bulletin of Earthquake Engineering 15 (2): 621–41. doi: 10.1007/s10518-015-9738-x.
  • Faella, G., G. Manfredi, and R. Realfonzo. 1991. Comportamento sperimentale di pannelli in muratura di tufo sottoposti ad azioni orizzontali di tipo ciclico. Proceedings of the 5th Italian Conference on Earthquake Engineering, 29th September–2nd October, Palermo, Italy.
  • Feenstra, P. H. (1993). Computational aspects of biaxial stress in plain and reinforced concrete. PhD thesis, Delft University of Technology.
  • Ferreira, T. M., A. A. Costa, and A. Costa. 2015. Analysis of the out-of-plane seismic behavior of unreinforced masonry: A literature review. International Journal of Architectural Heritage 9 (8): 949–72. doi: 10.1080/15583058.2014.885996.
  • Gaetani, A., N. Bianchini, and P. B. Lourenço. 2021. Simplified micro-modelling of masonry cross vaults: Stereotomy and interface issues. International Journal of Masonry Research and Innovation 6 (1): 97–125. doi: 10.1504/IJMRI.2021.112076.
  • Galasco, A., S. Lagomarsino, and A. Penna. 2006. On the use of pushover analysis for existing masonry buildings. Proceedings of the 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland.
  • Giuffré, A. 1996. A mechanical model for statics and dynamics of historical masonry buildings. In: V. Petrini and M. Save (eds). Protection of the architectural heritage against earthquakes. CISM Courses and Lectures no. 359. Springer, Wien, 71–152.
  • Grant, D. N., J. Dennis, R. Sturt, G. Milan, D. McLennan, P. Negrette, R. da Costa, and M. Palmieri. 2021. Explicit modelling of collapse for Dutch unreinforced masonry building typology fragility functions. Bulletin of Earthquake Engineering 19 (15): 6497–519. doi: 10.1007/s10518-020-00923-y.
  • Griffith, M. C., G. Magenes, G. Melis, and L. Picchi. 2003. Evaluation of out-of-plane stability of unreinforced masonry walls subjected to seismic excitation. Journal of Earthquake Engineering 7 (spec01): 141–69. doi: 10.1080/13632460309350476.
  • Griffith, M. C., N. T. Lam, J. L. Wilson, and K. Doherty. 2004. Experimental investigation of unreinforced brick masonry walls in flexure. Journal of Structural Engineering 130 (3): 423–32. doi: 10.1061/(ASCE)0733-9445(2004)130:3(423).
  • Housner, G. W. 1963. The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America 53 (2): 403–17. doi: 10.1785/BSSA0530020403.
  • Iervolino, I., R. Baraschino, and A. Spillatura. 2022. Evolution of seismic reliability of code-conforming Italian buildings. Journal Earthquake Engineering. under review.
  • Kallioras, S., F. Graziotti, and A. Penna. 2019. Numerical assessment of the dynamic response of a URM terraced house exposed to induced seismicity. Bulletin of Earthquake Engineering 17 (3): 1521–52. doi: 10.1007/s10518-018-0495-5.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56: 1787–99. doi: 10.1016/j.engstruct.2013.08.002.
  • Lagomarsino, S. 2015. Seismic assessment of rocking masonry structures. Bulletin of Earthquake Engineering 13 (1): 97–128. doi: 10.1007/s10518-014-9609-x.
  • Lagomarsino, S., and S. Cattari. 2015. Seismic performance of historical masonry structures through pushover and nonlinear dynamic analyses. In Perspectives on European earthquake engineering and seismology, ed. A. Ansal, 265–92. Cham: Springer.
  • Lourenço, P. B., N. Mendes, L. F. Ramos, and D. V. Oliveira. 2011. Analysis of masonry structures without box behaviour. International Journal of Architectural Heritage 5 (4–5): 369–82. doi: 10.1080/15583058.2010.528824.
  • Magenes, G., A. Penna, I. Senaldi, M. Rota, and A. Galasco. 2014. Shaking table test of a strengthened full scale stone masonry building with flexible diaphragms. International Journal of Architectural Heritage 8 (3): 349–75. doi: 10.1080/15583058.2013.826299.
  • Malomo, D., R. Pinho, and A. Penna. 2020. Applied element modelling of the dynamic response of a full-scale clay brick masonry building specimen with flexible diaphragms. International Journal of Architectural Heritage 14 (10): 1484–501. doi: 10.1080/15583058.2019.1616004.
  • Mann, W., and H. Müller. 1982. Failure shear-stressed masonry - an enlarged theory, tests and application to shear walls. Proceedings of the British Ceramic Society 30: 223–35.
  • Menon, A., and G. Magenes. 2011a. Definition of seismic input for out-of-plane response of masonry walls: I. Parametric study. Journal of Earthquake Engineering 15: 165–94. doi: 10.1080/13632460903456981.
  • Menon, A., and G. Magenes. 2011b. Definition of seismic input for out-of-plane response of masonry walls: II. Formulation. Journal of Earthquake Engineering 15: 195–213. doi: 10.1080/13632460903494446.
  • MidasFEA. 2021. v1.1 manual: Analysis and algorithm Midas FEA NX, advanced nonlinear and detail analysis program. Midas IT.
  • Nakamura, Y., H. Derakhshan, M. C. Griffith, G. Magenes, and A. H. Sheikh. 2017. Applicability of nonlinear static procedures for low-rise unreinforced masonry buildings with flexible diaphragms. Engineering Structures 137: 1–18. doi: 10.1016/j.engstruct.2017.01.049.
  • Ottonelli, D., C. F. Manzini, C. Marano, E. A. Cordasco, and S. Cattari. 2022. A comparative study on a complex URM building: Part I—sensitivity of the seismic response to different modelling options in the equivalent frame models. Bulletin of Earthquake Engineering 20: 2115–58.
  • Penna, A., P. Morandi, M. Rota, C. F. Manzini, F. Da Porto, and G. Magenes. 2014a. Performance of masonry buildings during the Emilia 2012 earthquake. Bulletin of Earthquake Engineering 12 (5): 2255–73. doi: 10.1007/s10518-013-9496-6.
  • Penna, A., S. Lagomarsino, and A. Galasco. 2014b. A nonlinear macro-element model for the seismic analysis of masonry buildings. Earthquake Engineering and Structural Dynamics 43 (2): 159–79. doi: 10.1002/eqe.2335.
  • Penna, A. 2015. Seismic assessment of existing and strengthened stone-masonry buildings: Critical issues and possible strategies. Bulletin of Earthquake Engineering 13 (4): 1051–71. doi: 10.1007/s10518-014-9659-0.
  • Penna, A., I. Senaldi, A. Galasco, and G. Magenes. 2016. Numerical simulation of shaking table tests on full-scale stone masonry buildings. International Journal of Architectural Heritage 10 (2–3): 146–63. doi: 10.1080/15583058.2015.1113338.
  • Penna, A., M. Rota, S. Bracchi, M. Angiolilli, S. Cattari, and S. Lagomarsino. 2022. Modeling and seismic response analysis of existing URM structures. Part 1: Archetypes of Italian modern buildings. Journal of Earthquake Engineering.
  • Quagliarini, E., G. Maracchini, and F. Clementi. 2017. Uses and limits of the equivalent frame model on existing unreinforced masonry buildings for assessing their seismic risk: A review. Journal of Building Engineering 10: 166–82. doi: 10.1016/j.jobe.2017.03.004.
  • Raka, E., E. Spacone, V. Sepe, and G. Camata. 2015. Advanced frame element for seismic analysis of masonry structures: Model formulation and validation. Earthquake Engineering and Structural Dynamics 44 (14): 2489–506. doi: 10.1002/eqe.2594.
  • Rondelet, J. B. 1839. Trattato teorico e pratico dell’arte di edificare. Vol. 1. Italian: Tipografia Del Gallo.
  • Rossi, M., C. Calderini, and S. Lagomarsino. 2016. Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model. Bulletin of Earthquake Engineering 14 (1): 261–81. doi: 10.1007/s10518-015-9815-1.
  • Senaldi, I., G. Magenes, A. Penna, A. Galasco, and M. Rota. 2014. The effect of stiffened floor and roof diaphragms on the experimental seismic response of a full scale unreinforced stone masonry building. Journal of Earthquake Engineering 18 (3): 407–43. doi: 10.1080/13632469.2013.876946.
  • Senaldi, I. E., G. Guerrini, P. Comini, F. Graziotti, A. Penna, K. Beyer, and G. Magenes. 2020. Experimental seismic performance of a half-scale stone masonry building aggregate. Bulletin of Earthquake Engineering 18: 609–43. doi: 10.1007/s10518-019-00631-2.
  • Simões, A., R. Bento, S. Cattari, and S. Lagomarsino. 2014. Seismic performance-based assessment of “Gaioleiro” buildings. Engineering Structures 80: 486–500. doi: 10.1016/j.engstruct.2014.09.025.
  • Sivori, D., S. Cattari, and M. Lepidi. 2022. A methodological framework to relate the earthquake-induced frequency reduction to structural damage in masonry buildings. Bulletin of Earthquake Engineering 1–36. doi: 10.1007/s10518-022-01345-8.
  • Sorrentino, L., R. Masiani, and M. C. Griffith. 2008a. The vertical spanning strip wall as a coupled rocking rigid body assembly. Structural Engineering and Mechanics 29 (4): 433–54. doi: 10.12989/sem.2008.29.4.433.
  • Sorrentino, L., S. Kunnath, G. Monti, and G. Scalora. 2008b. Seismically induced one-sided rocking response of unreinforced masonry façades. Engineering Structures 30 (8): 2140–53. doi: 10.1016/j.engstruct.2007.02.021.
  • Sorrentino, L., D. D’Ayala, G. De Felice, M. C. Griffith, S. Lagomarsino, and G. Magenes. 2017. Review of out-of-plane seismic assessment techniques applied to existing masonry buildings. International Journal of Architectural Heritage 11 (1): 2–21.
  • Sorrentino, L., S. Cattari, F. da Porto, G. Magenes, and A. Penna. 2019. Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering 17 (10): 5583–607. doi: 10.1007/s10518-018-0370-4.
  • Spence, R., and D. D’Ayala. 1999. Damage assessment and analysis of the 1997 Umbria-Marche earthquakes. Structural Engineering International 9 (3): 229–33. doi: 10.2749/101686699780482014.
  • Thorenfeldt, E. 1987. Mechanical properties of high-strength concrete and applications in design. Symposium Proceedings, Utilization of High-Strength Concrete, Norway.
  • Tomassetti, U., F. Graziotti, A. Penna, and G. Magenes. 2018. Modelling one-way out-of-plane response of single-leaf and cavity walls. Engineering Structures 167: 241–55. doi: 10.1016/j.engstruct.2018.04.007.
  • Tomassetti, U., F. Graziotti, L. Sorrentino, and A. Penna. 2019. Modelling rocking response via equivalent viscous damping. Earthquake Engineering and Structural Dynamics 48 (11): 1277–96. doi: 10.1002/eqe.3182.
  • Turnšek, V., and P. Sheppard. 1980. The shear and flexural resistance of masonry walls. Proc. of the Intern. Research Conf. on Earthquake Engineering, Skopje, Macedonia.
  • Valluzzi, M. R. 2007. On the vulnerability of historical masonry structures: Analysis and mitigation. Materials and Structures 40 (7): 723–43. doi: 10.1617/s11527-006-9188-7.
  • Vanin, F., A. Penna, and K. Beyer. 2020. A three-dimensional macroelement for modelling the in-plane and out-of-plane response of masonry walls. Earthquake Engineering and Structural Dynamics 49 (14): 1365–87. doi: 10.1002/eqe.3277.
  • Wilson, A., P. J. H. Quenneville, and J. M. Ingham. 2014. In-plane orthotropic behavior of timber floor diaphragms in unreinforced masonry buildings. Journal of Structural Engineering 140 (1): 04013038. doi: 10.1061/(ASCE)ST.1943-541X.0000819.
  • Zuccaro, G., M. Dolce, D. De Gregorio, E. Speranza, and C. Moroni. 2015. La scheda CARTIS per la caratterizzazione tipologico-strutturale dei comparti urbani costituiti da edifici ordinari. Valutazione dell’esposizione in analisi di rischio sismico. Proceedings of the GNGTS, Italian.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.