347
Views
7
CrossRef citations to date
0
Altmetric
The 2019-2021 RINTC (The Implicit Seismic Risk of Existing Structures) Project

Modelling and Seismic Response Analysis of Existing URM Structures. Part 1: Archetypes of Italian Modern Buildings

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1130-1156 | Received 28 Mar 2022, Accepted 23 Jun 2022, Published online: 06 Jul 2022

References

  • Antoniou, S., and R. Pinho. 2004. Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering 8 (5): 643–61. doi: 10.1080/13632460409350504.
  • Azizi-Bondarabadi, H., N. Mendes, and P. B. Lourenco. 2019. Higher mode effects in pushover analysis of irregular masonry buildings. Journal of Earthquake Engineering 25 (8): 1459–93. doi: 10.1080/13632469.2019.1579770.
  • Beyer, K., and A. Dazio. 2012. Quasi-static monotonic and cyclic tests on composite spandrels. Earthquake Spectra 28 (3): 885–906. Earthquake Engineering Research Institute. doi: 10.1193/1.4000058.
  • Beyer, K., and S. Mangalathu. 2013. Review of strength models for masonry spandrels. Bulletin of Earthquake Engineering 11 (2): 521–42. doi: 10.1007/s10518-012-9394-3.
  • Beyer, K., and S. Mangalathu. 2014. Numerical study on the peak strength of masonry spandrels with arches. Journal of Earthquake Engineering 18 (2): 169–86. doi: 10.1080/13632469.2013.851047.
  • Bracchi, S., M. Rota, A. Penna, and G. Magenes. 2015. Consideration of modelling uncertainties in the seismic assessment of masonry buildings by equivalent-frame approach. Bulletin of Earthquake Engineering 13 (11): 3423–48. doi: 10.1007/s10518-015-9760-z.
  • Bracchi, S., M. Mandirola, M. Rota, and A. Penna. 2020. A new macroelement-based strategy for modelling reinforced masonry piers. Proceedings of the7th International Brick and Block Masonry Conference, Krakow, Poland.
  • Bracchi, S., A. Galasco, and A. Penna. 2021. A novel macroelement model for the nonlinear analysis of masonry buildings. Part: Axial and flexural behavior. Earthquake Engineering and Structural Dynamics 50 (8): 2233–52. doi: 10.1002/eqe.3445.
  • Bracchi, S., and A. Penna. 2021. A novel macroelement model for the nonlinear analysis of masonry buildings. Part 2: Shear behavior. Earthquake Engineering and Structural Dynamics 50 (8): 2212–32. doi: 10.1002/eqe.3444.
  • Calderini, C., S. Cattari, and S. Lagomarsino. 2009. In-plane strength of unreinforced masonry piers. Earthquake Engineering and Structural Dynamics 38: 243–67. doi: 10.1002/eqe.860.
  • Cattari, S., S. Resemini, and S. Lagomarsino. 2008. Modelling of vaults as equivalent diaphragms in 3D seismic analysis of masonry buildings. In Structural analysis of historic construction: Preserving safety and significance, two volume set, ed. D. D'Ayala and E. Fodde, 537–44. London, UK: CRC Press.
  • Cattari, S., and S. Lagomarsino. 2013a. Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses. Earthquake and Structures 4 (3): 241–64. doi: 10.12989/eas.2013.4.3.241.
  • Cattari, S., and S. Lagomarsino. 2013b. Masonry structures,51–200. In Developments in the field of displacement based seismic assessment, ed. T. Sullivan and G. M. Calvi, 524. Pavia, Italy: IUSS Press and EUCENTRE.
  • Cattari, S., D. Camilletti, S. Lagomarsino, S. Bracchi, M. Rota, and A. Penna. 2018. Masonry Italian code-conforming buildings. Part 2: Nonlinear modelling and time-history analysis. Journal of Earthquake Engineering 22 (sup2): 2010–40. doi: 10.1080/13632469.2018.1541030.
  • CEN 2005. 2005. Eurocode 8: Design of structures for earthquake resistance-part: General rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization.
  • da Porto, F., M. Donà, A. Rosti, M. Rota, S. Lagomarsino, S. Cattari, B. Borzi, M. Onida, D. De Gregorio, F. L. Perelli, et al. 2021. Comparative analysis of the fragility curves for Italian residential masonry and RC buildings. Bulletin of Earthquake Engineering 19 (8): 3209–52. doi: 10.1007/s10518-021-01120-1.
  • Decreto Ministeriale. 12 Febbraio 1982. Aggiornamento delle norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi. G. U. n. 56 del 26 febbraio982. (in Italian).
  • Decreto Ministro Lavori Pubblici. 20 Novembre 1987. Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento. S. O. alla G. U. n. 285 del 5 dicembre987. (in Italian).
  • Iervolino, I. 2017. Assessing uncertainty in estimation of seismic response for PBEE. Earthquake Engineering and Structural Dynamics 46 (10): 1711–23. doi: 10.1002/eqe.2883.
  • Iervolino, I., A. Spillatura, and P. Bazzurro. 2018. Seismic reliability of code-conforming Italian buildings. Journal of Earthquake Engineering 22 (sup2): 5–27. doi: 10.1080/13632469.2018.1540372.
  • Iervolino, I., R. Baraschino, and A. Spillatura. 2022a. Evolution of seismic reliability of code-conforming Italian buildings. Journal Earthquake Engineering. doi:10.1080/13632469.2022.2087801. under review.
  • Iervolino, I., R. Baraschino, D. Cardone, L. R. S. Viggiani, G. Della Corte, S. Lagomarsino, A. Penna, A. Belleri, and P. Riva. 2022b. Seismic fragility of Italian code-conforming buildings by multi-stripe dynamic analysis of three-dimensional structural models. Journal Earthquake Engineering. under review.
  • ISTAT (National Institute of Statistics). 2011. Censimento generale della popolazione—Dati sulle caratteristiche strutturale della popolazione, delle abitazioni e variabili. Accessed May 10, 2020. http://www.istat.it/it/archivio/104317. (in Italian).
  • Kallioras, S., F. Graziotti, and A. Penna. 2019. Numerical assessment of the dynamic response of a URM terraced house exposed to induced seismicity. Bulletin of Earthquake Engineering 17: 1521–52. doi: 10.1007/s10518-018-0495-5.
  • Kreslin, M., and P. Fajfar. 2012. The extended N2 method considering higher mode effects in both plan and elevation. Bulletin of Earthquake Engineering 10 (2): 695–715. doi: 10.1007/s10518-011-9319-6.
  • Lagomarsino, S., A. Penna, A. Galasco, and S. Cattari. 2013. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56 (11): 1787–99. doi: 10.1016/j.engstruct.2013.08.002.
  • Lagomarsino, S., and S. Cattari. 2015. Seismic performance of historical masonry structures through pushover and nonlinear dynamic analyses. In Perspectives on European earthquake engineering and seismology. Geotechnical, geological and earthquake engineering, ed. A. Ansal, Vol. 39, 265–92. Cham: Springer. doi: 10.1007/978-3-319-16964-4_11.
  • Lagomarsino, S., S. Cattari, and D. Ottonelli. 2021. The Heuristic vulnerability model: Fragility curves for masonry buildings. Bulletin of Earthquake Engineering 19 (8): 3129–63. doi: 10.1007/s10518-021-01063-7.
  • Lagomarsino, S., S. Cattari, M. Angiolilli, S. Bracchi, M. Rota, and A. Penna. 2022. Modelling and seismic response analysis of existing URM structures. Part 2: Archetypes of Italian historical buildings. Journal of Earthquake Engineering 1–26. doi: 10.1080/13632469.2022.2087800.
  • Liberatore, D., ed. 2000. Progetto Catania: Indagine sulla risposta sismica di due edifici in muratura. Rome, Italy: CNR-Gruppo Nazionale per la Difesa dai Terremoti. (in Italian).
  • Magenes, G., G. M. Calvi, and G. R. Kingsley. 1995. Seismic testing of a full-scale, two story masonry building: Test procedure and measured experimental response, in: Experimental and numerical investigation on a brick masonry building prototype - numerical prediction of the experiment. Report 3.0 G.N.D.T, University of Pavia, Pavia, Italy.
  • Magenes, G., and G. M. Calvi. 1997. In-plane seismic response of brick masonry walls. Earthquake Engineering and Structural Dynamics 26: 1091–112. doi: 10.1002/(SICI)1096-9845(199711)26:11<1091::AID-EQE693>3.0.CO;2-6.
  • Magenes, G., P. Morandi, and A. Penna. 2008. Experimental in-plane cyclic response of masonry walls with clay units. Proceedings of the4th WCEE, 8, Beijing, China. Paper No. 95.
  • Mann, W., and H. Müller. 1982. Failure of shear-stressed masonry: An enlarged theory, tests and application to shear walls. Proceedings of the British Ceramic Society 30: 223–35.
  • Messali, F., G. Metelli, and G. Plizzari. 2017. Experimental results on the retrofitting of hollow brick masonry walls with reinforced high performance mortar coatings. Construction and Building Materials 141: 619–30. doi: 10.1016/j.conbuildmat.2017.03.112.
  • MIT19. 2019. Ministry of Infrastructures and Transportation Circ. C.S.Ll.Pp. No. 7 of 21/1/2019: “Istruzioni per l’applicazione dell’”Aggiornamento delle “Norme tecniche per le costruzioni” di cui al decreto ministeriale7 gennaio 2018.” Consiglio superiore dei lavori pubblici. S.O. n 5.alla G.U. del1.2.2019, No. 35. (in Italian).
  • Morandi, P., L. Albanesi, F. Graziotti, T. Li Piani, A. Penna, and G. Magenes. 2018. Development of a dataset on the in-plane experimental response of URM piers with bricks and blocks. Construction and Building Materials 190: 593–611. doi: 10.1016/j.conbuildmat.2018.09.070.
  • Morandi, P., L. Albanesi, and G. Magenes. 2021. In-plane cyclic response of new URM systems with thin web and shell clay units. Journal of Earthquake Engineering 25 (8): 1533–64. doi: 10.1080/13632469.2019.1586801.
  • NTC18. 2018. Decreto Ministeriale7 Gennaio 2018: “Aggiornamento delle Norme tecniche per le costruzioni,” Ministero delle Infrastrutture. S.O. n.42 alla G.U. del 20.2.2018, No. 8. (in Italian).
  • Penna, A., S. Lagomarsino, and A. Galasco. 2014. A nonlinear macro-element model for the seismic analysis of masonry buildings. Earthquake Engineering and Structural Dynamics 43 (2): 159–79. doi: 10.1002/eqe.2335.
  • Rossi, M., C. Calderini, and S. Lagomarsino. 2016. Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model. Bulletin of Earthquake Engineering 14 (1): 261–81. doi: 10.1007/s10518-015-9815-1.
  • Rosti, A., M. Rota, and A. Penna. 2021. Empirical fragility curves for Italian URM buildings. Bulletin of Earthquake Engineering 19 (8): 3057–76. doi: 10.1007/s10518-020-00845-9.
  • Rota, M., S. Bracchi, D. Iorio, and A. Penna. 2020. Typological seismic fragility assessment of old railway stations by nonlinear time history analysis. Structure and Infrastructure Engineering. doi: 10.1080/15732479.2020.1822884.
  • Turnšek, V., and P. Sheppard. 1980. The shear and flexural resistance of masonry walls. Proceedings of the International Research Conference on Earthquake Engineering, Skopje, Macedonia.
  • Verderame, G. M., P. Ricci, M. Esposito, and G. Manfredi. 2012. STIL v.1.0 – Software per la caratterizzazione meccanica degli acciai da c.a. tra il950 e il 2000. ReLUIS, Naples, Italy. http://www.reluis.it. (in Italian).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.