219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Seismic Response of Rectangular Liquid Container with Dual Horizontal Baffles on Deformable Soil Foundation

, ORCID Icon, ORCID Icon, &
Pages 1943-1972 | Received 07 Jul 2021, Accepted 08 Jun 2022, Published online: 11 Aug 2022

References

  • Akyıldız, H., N. E. Ünal, and H. Aksoy. 2013. An experimental investigation of the effects of the ring baffles on liquid sloshing in a rigid cylindrical tank. Ocean Engineering 59: 190–97. doi:10.1016/j.oceaneng.2012.12.018.
  • Askari, E., K. H. Jeong, and M. Amabili. 2013. Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface. Journal of Sound and Vibration 332 (12): 3064–85. doi:10.1016/j.jsv.2013.01.007.
  • Battaglia, L., M. Cruchaga, M. Storti, J. D’Elía, J. Núñez Aedo, and R. Reinoso. 2018. Numerical modelling of 3D sloshing experiments in rectangular tanks. Applied Mathematical Modelling 59: 357–78. doi:10.1016/j.apm.2018.01.033.
  • Biswal, K. C., S. K. Bhattacharyya, and P. K. Sinha. 2006. Non‐linear sloshing in partially liquid filled containers with baffles. International Journal for Numerical Methods in Engineering 68 (3): 317–37. doi:10.1002/nme.1709.
  • Cao, X. Y., F. R. Ming, and A. M. Zhang. 2014. Sloshing in a rectangular tank based on SPH simulation. Applied Ocean Research 47: 241–54. doi:10.1016/j.apor.2014.06.006.
  • Cheng, X. S., B. Liu, L. L. Cao, D. P. Yu, and H. Feng. 2018. Dynamic response of a base-isolated CRLSS with baffle. Structural Engineering and Mechanics 66 (3): 411–21.
  • Cho, I. H. 2015. Sloshing analysis in rectangular tank with porous baffle. Journal of Ocean Engineering and Technology 29 (1): 1–8. doi:10.5574/KSOE.2015.29.1.001.
  • Cho, I. H., J. S. Choi, and M. H. Kim. 2017. Sloshing reduction in a swaying rectangular tank by a horizontal porous baffle. Ocean Engineering 138: 23–34. doi:10.1016/j.oceaneng.2017.04.005.
  • Cho, I. H., and M. H. Kim. 2016. Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank. Ocean Engineering 126: 364–73. doi:10.1016/j.oceaneng.2016.09.004.
  • Chowdhury, I., R. Tarafdar, A. Ghosh, and S. P. Dasgupta. 2017. Seismic response of rectangular liquid retaining structures resting on ground considering coupled soil-structure interaction. Bulletin of Earthquake Engineering 15 (9): 3695–726. doi:10.1007/s10518-017-0097-7.
  • Du, X. L., and M. Zhao. 2010. Stability and identification for rational approximation of frequency response function of unbonded soil. Earthquake Engineering & Structural Dynamics 39: 165–86.
  • Faltinsen, O. M., O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha. 2000. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of Fluid Mechanics 407: 201–34. doi:10.1017/S0022112099007569.
  • Faltinsen, O. M., and A. N. Timokha. 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics 470: 319–57. doi:10.1017/S0022112002002112.
  • Goudarzi, M. A., and S. R. Sabbagh-Yazdi. 2012a. Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles. Ocean Engineering 42: 205–17. doi: 10.1016/j.oceaneng.2011.12.005.
  • Goudarzi, M. A., and S. R. Sabbagh-Yazdi. 2012b. Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dynamics and Earthquake Engineering 43: 355–65. doi:10.1016/j.soildyn.2012.08.001.
  • Hasheminejad, S. M., and M. Aghabeigi. 2012. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles. Applied Mathematical Modelling 36: 57–71. doi: 10.1016/j.apm.2011.02.026.
  • Hermange, C., G. Oger, Y. Le Chenadec, and D. Le Touzé. 2019. A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground. Computer Methods in Applied Mechanics and Engineering 355: 558–90. doi:10.1016/j.cma.2019.06.033.
  • Hu, T. A., S. G. Wang, G. Y. Zhang, Z. Sun, and B. Zhou. 2019. Numerical simulations of sloshing flows with an elastic baffle using a SPH-SPIM coupled method. Applied Ocean Research 93: 101950. doi: 10.1016/j.apor.2019.101950.
  • Hu, Z., X. Y. Zhang, X. W. Li, and Y. Li. 2018. On natural frequencies of liquid sloshing in 2-D tanks using Boundary element method. Ocean Engineering 153: 88–103. doi:10.1016/j.oceaneng.2018.01.062.
  • Khayyer, A., H. Gotoh, H. Falahaty, and Y. Shimizu. 2018. An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions. Computer Physics Communications 232: 139–64. doi:10.1016/j.cpc.2018.05.012.
  • Kianoush, M. R., and A. R. Ghaemmaghami. 2011. The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction. Engineering Structures 33 (7): 2186–200. doi:10.1016/j.engstruct.2011.03.009.
  • Kim, J. M., S. H. Chang, and C. B. Yun. 2002. Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading. Structural Engineering and Mechanics 13 (6): 615–38. doi:10.12989/sem.2002.13.6.615.
  • Kim, S., and K. H. Lee. 2018. Hydrodynamic analysis of floating structures with baffled ARTs. Structural Engineering and Mechanics 68 (1): 1–15.
  • Krishnamoorthy, A. 2021. Finite element method of analysis for liquid storage tank isolated with friction pendulum system. Journal of Earthquake Engineering 25 (1): 82–92. doi:10.1080/13632469.2018.1498815.
  • Kumar, H., and S. K. Saha. 2021. Effects of soil-structure interaction on seismic response of fixed base and base isolated liquid storage tanks. Journal of Earthquake Engineering 1–24. doi:10.1080/13632469.2021.1911887.
  • Liu, D. M., and P. Z. Lin. 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Engineering 36 (2): 202–12. doi:10.1016/j.oceaneng.2008.10.004.
  • Luco, J. E., and R. A. Westmann. 1972. Dynamic response of a rigid footing bonded to an elastic half space. Journal of Applied Mechanics 39 (2): 527–34. doi:10.1115/1.3422711.
  • Lyu, Y., J. G. Sun, Z. G. Sun, L. F. Cui, and Z. Wang. 2020. Simplified mechanical model for seismic design of horizontal storage tank considering soil-tank-liquid interaction. Ocean Engineering 198: 106953. doi:10.1016/j.oceaneng.2020.106953.
  • Maleki, A., and M. Ziyaeifar. 2007. Damping enhancement of seismic isolated cylindrical liquid storage tanks using baffles. Engineering Structures 29 (12): 3227–40. doi:10.1016/j.engstruct.2007.09.008.
  • Meng, X., D. Zhou, M. K. Kim, and Y. M. Lim. 2020. Free vibration and dynamic response analysis of liquid in a rectangular rigid container with an elastic baffle. Ocean Engineering 216: 108119. doi:10.1016/j.oceaneng.2020.108119.
  • Miles, J. W. 1967. Surface wave damping in closed basins. Proceeding of the Royal Society of London 197: 459–75.
  • Moslemi, M., A. Farzin, and M. R. Kianoush. 2019. Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation. Engineering Structures 188: 564–77. doi:10.1016/j.engstruct.2019.03.037.
  • Nasar, T., and S. A. Sannasiraj. 2019. Sloshing dynamics and performance of porous baffle arrangements in a barge carrying liquid tank. Ocean Engineering 183: 24–39. doi:10.1016/j.oceaneng.2019.04.022.
  • Nayak, S. K., and K. C. Biswal. 2015. Fluid damping in rectangular tank fitted with various internal objects–An experimental investigation. Ocean Engineering 108: 552–62. doi:10.1016/j.oceaneng.2015.08.042.
  • Sanapala, V. S., M. Rajkumar, K. Velusamy, and B. S. V. Patnaik. 2018. Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. Journal of Fluids and Structures 76: 229–50. doi:10.1016/j.jfluidstructs.2017.10.001.
  • Shekari, M. R. 2018. A coupled BE–FE–BE study for investigating the effect of earthquake frequency content and predominant period on seismic behavior of base-isolated concrete rectangular liquid tanks. Journal of Fluids and Structures 77: 19–35. doi:10.1016/j.jfluidstructs.2017.11.003.
  • Shekari, M. R., A. A. Hekmatzadeh, and S. M. Amiri. 2019. On the nonlinear dynamic analysis of base-isolated three-dimensional rectangular thin-walled steel tanks equipped with vertical baffle. Thin-Walled Structures 138: 79–94. doi:10.1016/j.tws.2019.01.037.
  • Sun, Y., D. Zhou, M. Amabili, J. D. Wang, and H. X. Han. 2020. Liquid sloshing in a rigid cylindrical tank equipped with a rigid annular baffle and on soil foundation. International Journal of Structural Stability and Dynamics 20 (3): 2050030. doi:10.1142/S0219455420500303.
  • Sygulski, R. 2011. Boundary element analysis of liquid sloshing in baffled tanks. Engineering Analysis with Boundary Elements 35 (8): 978–83. doi:10.1016/j.enganabound.2011.03.001.
  • Ünal, U. O., G. Bilici, and H. Akyıldız. 2019. Liquid sloshing in a two-dimensional rectangular tank: A numerical investigation with a T-shaped baffle. Ocean Engineering 187: 106183. doi:10.1016/j.oceaneng.2019.106183.
  • Wang, J., D. Zhou, W. Q. Liu, and S. G. Wang. 2016. Nested lumped-parameter model for foundation with strongly frequency-dependent impedance. Journal of Earthquake Engineering 20 (6): 975–91. doi:10.1080/13632469.2015.1109568.
  • Ying, L., X. Meng, D. Zhou, X. L. Xu, J. D. Zhang, and X. H. Li. 2019. Sloshing of fluid in a baffled rectangular aqueduct considering soil-structure interaction. Soil Dynamics and Earthquake Engineering 122: 132–47. doi:10.1016/j.soildyn.2019.04.008.
  • Zang, Q. S., H. Y. Fang, J. Liu, and G. Lin. 2019. Boundary element model for investigation of the effects of various porous baffles on liquid sloshing in the two dimensional rectangular tank. Engineering Analysis with Boundary Elements 108: 484–500. doi:10.1016/j.enganabound.2019.09.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.