2,301
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Direct Displacement-based Seismic Design of Glulam Frames with Buckling Restrained Braces

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2166-2197 | Received 11 Jan 2022, Accepted 20 Jun 2022, Published online: 22 Aug 2022

References

  • Aguaguiña, M., Y. Zhou, and Y. Zhou. 2019. Loading protocols for qualification testing of BRBs considering global performance requirements. Engineering Structures 189 (November 2018):440–57. doi:10.1016/j.engstruct.2019.03.094.
  • American Institute of Steel Construction (AISC). 2016. Seismic provisions for structural steel buildings. ANSI/AISC 341-16. Chicago, IL: Seismic provisions for structural steel buildings.
  • Australia and New Zealand Standards. 2002. ASNZS1170.0: structural design actions - Part 0: General principles. structural design actions. Sydney, Australia/Wellington, New Zealand: Australia and New Zealand Standards for Building Code.
  • Australia and New Zealand Standards. 2004. NZS1170.5: structural design actions - Part 5: Earthquake actions-New Zealand. Sydney, Australia/Wellington, New Zealand: Australia and New Zealand Standards for Building Code.
  • Belleri, A. 2017. Displacement based design for precast concrete frames with not-emulative connections. Engineering Structures 141: 228–40. doi:10.1016/j.engstruct.2017.03.020.
  • Bezabeh, M. A., S. Tesfamariam, and S. F. Stiemer. 2016. Equivalent viscous damping for steel moment-resisting frames with cross-laminated timber infill walls. Journal of Structural Engineering (United States) 142 (1): 04015080. doi:10.1061/(ASCE)ST.1943-541X.0001316.
  • Blandon, C. A., and M. J. N. Priestley. 2005. Equivalent viscous damping equations for direct displacement based design. Journal of Earthquake Engineering 9 ( SPEC2): 257–78. doi:10.1142/S1363246905002390.
  • British Standard Institution (BSI). 1998. Eurocode 8: Design of structures for earthquake resistance. London: British Standard Institution (BSI).
  • British Standard Institution (BSI). 2005a. Eurocode 8: Design of structures for earthquake resistance. London: British Standards Institution (BSI).
  • British Standard Institution (BSI). 2005b. Eurocode 3: Design of steel structures: Part 1-1: General rules and rules for buildings, BS EN 1993-1-1. London: British Standards Institution(BSI).
  • Brown, J. R., M. Li, A. Palermo, S. Pampanin, and F. Sarti. 2021. Experimental testing of a low-damage post-tensioned C-Shaped CLT Core-Wall. Journal of Structural Engineering 147 (3). doi:10.1061/(ASCE)ST.1943-541X.0002926.
  • Brown, J. R., M. Li, A. Palermo, S. Pampanin, F. Sarti, and R. Nokes. 2022. Experimental testing and analytical modelling of single and double post-tensioned CLT shear walls. Engineering Structures 256 (August 2021):114065. doi:10.1016/j.engstruct.2022.114065.
  • Chang, T. 2018. Suanpan- an open source, parallel and heterogeneous finite element analysis framework [online].
  • Charney, F. A. 2008. Unintended consequences of modeling damping in structures. Journal of Structural Engineering 134 (4): 581–92. doi:10.1061/(ASCE)0733-9445(2008)134:4(581).
  • Chen, F., Z. Li, M. He, Y. Wang, Z. Shu, and G. He. 2021. Seismic performance of self-centering steel-timber hybrid shear wall structures. Journal of Building Engineering 43 (April): 102530. doi:10.1016/j.jobe.2021.102530.
  • Chopra, A. K., and F. McKenna. 2016. Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation. Earthquake Engineering & Structural Dynamics 45 (2): 193–211. doi:10.1002/eqe.2622.
  • Della Corte, G. 2006. Vibration mode vs. collapse mechanism control for steel frames. In Proceedings of the 5th international conference on behaviour of steel structures in seismic areas - Stessa 2006, 423–28. Yokohama, Japan.
  • Dhakal, R. P., A. Pourali, A. S. Tasligedik, T. Yeow, A. Baird, G. MacRae, S. Pampanin, and A. Palermo. 2016. Seismic performance of non-structural components and contents in buildings: An overview of NZ research. Earthquake Engineering and Engineering Vibration 15 (1): 1–17. doi:10.1007/s11803-016-0301-9.
  • Dickof, C., S. F. Stiemer, M. A. Bezabeh, and S. Tesfamariam. 2014. CLT–steel hybrid system: ductility and overstrength values based on static pushover analysis. Journal of Performance of Constructed Facilities 28 (6). doi:10.1061/(ASCE)CF.1943-5509.0000614.
  • Dong, H., M. He, C. Christopoulos, and Z. Li. 2020a. Quasi-static tests and parametric simulations of hybrid steel frame and light wood shear walls with frictional dampers. Engineering Structures 228 (1239): 111485. doi:10.1016/j.engstruct.2020.111485.
  • Dong, W . 2021. Seismic performance of glulam frames with buckling restrained braces (BRBs). Christchurch, New Zealand: University of Canterbury. https://ir.canterbury.ac.nz/handle/10092/102404
  • Dong, W., M. Li, C. Lee, and G. MacRae. 2021. Numerical modelling of glulam frames with buckling restrained braces. Engineering Structures 239: 112338. doi:10.1016/j.engstruct.2021.112338.
  • Dong, W., M. Li, C. Lee, G. MacRae, and A. Abu. March 2020b. Experimental testing of full-scale glulam frames with buckling restrained braces. Engineering Structures 222: 111081. doi:10.1016/j.engstruct.2020.111081.
  • Dwairi, H. M., M. J. Kowalsky, and J. M. Nau. 2007. Equivalent damping in support of direct displacement-based design. Journal of Earthquake Engineering 11 (4): 512–30. doi:10.1080/13632460601033884.
  • Erduran, E., and A. Yakut. 2004. Drift based damage functions for reinforced concrete columns. Computers and Structures 82 (2–3): 121–30. doi:10.1016/j.compstruc.2003.10.003.
  • Erochko, J., C. Christopoulos, R. Tremblay, and H. Choi. 2011. Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05. Journal of Structural Engineering 137 (5): 589–99. doi:10.1061/(ASCE)ST.1943-541X.0000296.
  • Filiatrault, A., and B. Folz. 2002. Performance-based seismic design of wood framed buildings. Journal of Structural Engineering 128 (1): 39–47. doi: 10.1061/(ASCE)0733-9445(2002)128:1(39).
  • Gardiner, S., G. C. Clifton, and G. A. MacRae. 2013. Performance, damage assessment and repair of a multistorey eccentrically braced framed building following the Christchurch earthquake series. Steel Innovations Conference 2013, Christchurch, New Zealand.
  • Ghaffarzadeh, H., A. Jafari, and N. Talebian. 2014. Equivalent viscous damping in direct displacement‐based design of steel braced reinforced concrete frames. The Structural Design of Tall and Special Buildings 23 (8): 604–18. doi: 10.1002/tal.1069.
  • Ghobarah, A., H. Abou-Elfath, and A. Biddah. 1999. Response-based damage assessment of structures. Earthquake Engineering and Structural Dynamics 28 (1): 79–104. doi: 10.1002/(SICI)1096-9845(199901)28:1<79::AID-EQE805>3.0.CO;2-J.
  • Gilbert, C. F., and J. Erochko. 2019. Development and testing of hybrid timber-steel braced frames. Engineering Structures 198 (1): 109495. doi: 10.1016/j.engstruct.2019.109495.
  • Granello, G., A. Palermo, S. Pampanin, S. Pei, and J. Van De Lindt. 2020. Pres-lam buildings: state-of-the-art. Journal of Structural Engineering (United States) 146 (6): 1–16.
  • Grant, D. N., C. A. Blandon, and M. J. N. Priestley. 2005. Modelling inelastic response in direct displacement-based design. Pavia, Italy: IUSS Press.
  • Hashemi, A., P. Zarnani, and P. Quenneville. April 2020. Seismic assessment of rocking timber walls with energy dissipation devices. Engineering Structures 221: 111053. doi: 10.1016/j.engstruct.2020.111053.
  • He, M., Z. Li, F. Lam, R. Ma, and Z. Ma. 2014. Experimental investigation on lateral performance of timber-steel hybrid shear wall systems. Journal of Structural Engineering 140 (6): 04014029. doi: 10.1061/(ASCE)ST.1943-541X.0000855.
  • He, M., Q. Luo, Z. Li, H. Dong, and M. Li. 2018. Seismic performance evaluation of timber-steel hybrid structure through large-scale shaking table tests. Engineering Structures 175 (June 2017):483–500. doi:10.1016/j.engstruct.2018.08.029.
  • Himes, A., and G. Busby. 2020. Wood buildings as a climate solution. Developments in the Built Environment 4 (October): 100030. doi: 10.1016/j.dibe.2020.100030.
  • Houtte, C. V., S. Bannister, C. Holden, S. Bourguignon, and G. Mcverry. 2017. The New Zealand strong ground motion database. Bulletin of the New Zealand Society for Earthquake Engineering 50 (1): 1–20. doi: 10.5459/bnzsee.50.1.1-20.
  • Jacobsen, L. S. 1960. Damping in composite structures. Tokyo: II WCEE.
  • Khan, E., M. J. Kowalsky, and J. M. Nau. 2016. Equivalent viscous damping model for short-period reinforced concrete bridges. Journal of Bridge Engineering 21 (2): 1–12. doi: 10.1061/(ASCE)BE.1943-5592.0000803.
  • Kirstein, A., J. Siracusa, and T. Smith. 2018. The new timber von Haast replacement building in Christchurch. In 2018 NZSEE conference, 1–9. Auckland, New Zealand.
  • Kowalsky, M. J., M. J. N. Priestley, and G. A. MacRae. 1994. Displacementbased design of RC bridge columns. Proceedings of the Second International Workshop on Seismic Design of Bridges Queenstown, New Zealand.
  • Landi, L., P. Diotallevi, and A. Tardini. 2012. Equivalent viscous damping for the displacement-based seismic assessment of infilled RC frames. 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Lee, C. L. 2020a. Proportional viscous damping model for matching damping ratios. Engineering Structures 207 (August 2019):110178. doi:10.1016/j.engstruct.2020.110178.
  • Lee, C. L. 2020b. Sparse proportional viscous damping model for structures with large number of degrees of freedom. Journal of Sound and Vibration 478: 115312. doi: 10.1016/j.jsv.2020.115312.
  • Lee, C. L. 2021. Bell-shaped proportional viscous damping models with adjustable frequency bandwidth. Computers and Structures 244: 106423. doi: 10.1016/j.compstruc.2020.106423.
  • Lee, C. 2022. Type 4 bell-shaped proportional damping model and energy dissipation for structures with inelastic and softening response. Computers & Structures 258: 106663. doi: 10.1016/j.compstruc.2021.106663.
  • Li, Z., X. Wang, M. He, and H. Dong. 2019. Seismic performance of timber-steel hybrid structures. II: calibration of performance objectives and design method. Journal of Structural Engineering (United States) 145 (10): 04019114.
  • Liu, T., T. Zordan, Q. Zhang, and B. Briseghella. 2015. Equivalent viscous damping of bilinear hysteretic oscillators. Journal of Structural Engineering (United States) 141 (11): 1–12.
  • López, W., and R. Sabelli. 2004. Seismic design of buckling-restrained braced frames. Moraga, USA: Structural Steel Educational Council.
  • Loss, C., D. Zonta, and M. Piazza. 2012. Analytical model to evaluate the equivalent viscous damping of timber structures with dowel-type fastener connections. World Conference on Timber Engineering 2012, WCTE 2012 2 (July): 516–25.
  • Luo, Q., M. He, F. Chen, and Z. Li. 2021. Probabilistic seismic performance assessment of timber-steel hybrid structures subjected to mainshock-aftershock sequences. Soil Dynamics and Earthquake Engineering 141 (December 2020):106532. doi:10.1016/j.soildyn.2020.106532.
  • Mahjoubi, S., and S. Maleki. 2016. Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers. Journal of Constructional Steel Research 122: 25–39. doi: 10.1016/j.jcsr.2016.01.023.
  • Maley, T. J., T. J. Sullivan, and G. D. Corte. 2010. Development of a displacement-based design method for steel dual systems with buckling-restrained braces and moment-resisting frames. Journal of Earthquake Engineering 14 (SUPPL. 1): 106–40. doi: 10.1080/13632461003651687.
  • Maley, T., T. J. Sullivan, A. Lago, R. Roldan, and G. M. Calvi. 2013. Characterising the seismic behaviour of steel MRF structures. Pavia, Italy: IUSS Press.
  • Malla, N., and A. C. Wijeyewickrema. 2021. Direct displacement-based design of coupled walls with steel shear link coupling beams. Structures 34 (July): 2746–64. doi: 10.1016/j.istruc.2021.09.004.
  • Mazza, F., and A. Vulcano. 2014. Equivalent viscous damping for displacement-based seismic design of hysteretic damped braces for retrofitting framed buildings. Bulletin of Earthquake Engineering 12 (6): 2797–819. doi: 10.1007/s10518-014-9601-5.
  • Mazzoni, S., F. McKenna, M. H. Scott, and G. L. Fenves. 2006. OpenSees command language manual. Berkeley, USA: Pacific Earthquake Engineering Research (PEER) Center.
  • McCormick, J., H. Aburano, M. Ikenaga, and M. Nakashima. 2008. Permissible residual deformation levels for building structures considering both safety and human elements. In The 14th world conference on earthquake engineering, 8. Beijing, China.
  • Medina, R. A., and H. Krawinkler. 2005. Evaluation of drift demands for the seismic performance assessment of frames. Journal of Structural Engineering 131 (7): 1003–13. doi: 10.1061/(ASCE)0733-9445(2005)131:7(1003).
  • Metelli, G., G. Bregoli, and F. Genna. 2016. Experimental study on the lateral thrust generated by core buckling in bolted-BRBs. Journal of Constructional Steel Research 122: 409–20. doi: 10.1016/j.jcsr.2016.04.004.
  • New Zealand Standards. 1993. NZS3603:1993 Timber structures standard.
  • Nievas, C. I., and T. J. Sullivan. 2015. Applicability of the direct displacement-based design method to steel moment resisting frames with setbacks. Bulletin of Earthquake Engineering 13 (12): 3841–70. doi: 10.1007/s10518-015-9787-1.
  • Pang, W., and D. V. Rosowsky. 2009. Direct displacement procedure for performance-based seismic design of mid-rise wood-framed structures. Earthquake Spectra 25 (3): 583–605. doi: 10.1193/1.3158932.
  • Park, R. 1989. Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand Society for Earthquake Engineering 22 (3): 155–66. doi: 10.5459/bnzsee.22.3.155-166.
  • PEER. 2005. PEER NGA database [online]. Berkeley: Pacific Earthquake Engineering Research (PEER) Center University of California. Accessed August 12, 2022. http://peer.berkeley.edu/nga/index.html
  • Pennucci, D., G. M. Calvi, and T. J. Sullivan. 2009. Displacement-based design of precast walls with additional dampers. Journal of Earthquake Engineering 13 (1 SUPPL. 1): 40–65. doi: 10.1080/13632460902813265.
  • Pennucci, D., T. J. Sullivan, and G. M. Calvi. 2011. Displacement reduction factors for the design of medium and long period structures. Journal of Earthquake Engineering 15 (SUPPL. 1): 1–29. doi: 10.1080/13632469.2011.562073.
  • Pettinga, J. D., and M. J. N. Priestley. 2005. Designed with direct displacement-based design. Journal of Earthquake Engineering 9 (2): 309–30. doi: 10.1142/S1363246905002419.
  • Priestley, M. J. N. 1995. Myths and fallacies in earthquake engineering–conflicts between design and reality. Special Publication 157: 231–54.
  • Priestley, M. J. N. 2003. Myths and fallacies in earthquake engineering. Revisited The Ninth Mallet Milne Lecture 2003 (May): 98.
  • Priestley, M. J. N., G. M. Calvi, and M. J. Kowalsky. 2007. Displacement-based seismic design of structures. Pavia, Italy: IUSS Press.
  • Priestley, M. J. N., and M. J. Kowalsky. 2000. Direct displacement-based seismic design of concrete buildings. Bulletin of the New Zealand Society for Earthquake Engineering 33 (4): 421–44. doi: 10.5459/bnzsee.33.4.421-444.
  • Quintana Gallo, P., D. M. Carradine, and R. Bazaez. 2021. State of the art and practice of seismic-resistant hybrid timber structures. European Journal of Wood and Wood Products 79: 5–28. doi:10.1007/s00107-020-01556-3.
  • Rajeev, P., K. K. Wijesundara, M. Al-Mashaykhi, M. J. Hashemi, and E. Gad. 2017. Displacement profile for displacement based seismic design of concentric braced frames. 16th World Conference on Earthquake Engineering, Santiago, Chile.
  • Roldán, R., T. J. Sullivan, and G. Della Corte. 2016. Displacement-based design of steel moment resisting frames with partially-restrained beam-to-column joints. Bulletin of Earthquake Engineering 14 (4): 1017–46. doi: 10.1007/s10518-016-9879-6.
  • Sahoo, D. R., and A. Prakash. 2019. Seismic behavior of concentrically braced frames designed using direct displacement-based method. International Journal of Steel Structures 19 (1): 96–109. doi: 10.1007/s13296-018-0092-0.
  • Salawdeh, S., and J. Goggins. 2016. Direct displacement based seismic design for single storey steel concentrically braced frames. Earthquake and Structures 10 (5): 1125–41. doi: 10.12989/eas.2016.10.5.1125.
  • Song, X., A. M. Asce, Y. Wu, H. Jiang, and T. Chen. 2022. Lateral performance of glulam timber frames with CFRP confined timber-steel buckling-restrained bracings. Journal of Structural Engineering 148 (2003): 1–16.
  • Sullivan, T. J. 2013. Direct displacement-based seismic design of steel eccentrically braced frame structures. Bulletin of Earthquake Engineering 11 (6): 2197–231. doi: 10.1007/s10518-013-9486-8.
  • Sullivan, T. J., and G. O’Reilly. 2014. Characterising the seismic behaviour of steel beam-column joints for seismic design.
  • Sullivan, T. J., M. J. N. Priestley, and G. M. Calvi. 2006. Direct displacement-based design of frame-wall structures. Journal of Earthquake Engineering 10 (1): 91–124. doi: 10.1080/13632460609350630.
  • Sullivan, T. J., M. J. N. Priestley, and G. M. Calvi. 2012. A model code for the displacement-based seismic design of structures DBD12. Pavia, Italy: IUSS Press.
  • Terán-Gilmore, A., and J. Ruiz-García. 2011. Comparative seismic performance of steel frames retrofitted with buckling-restrained braces through the application of Force-Based and Displacement-Based approaches. Soil Dynamics and Earthquake Engineering 31 (3): 478–90. doi: 10.1016/j.soildyn.2010.11.003.
  • Thiers-moggia, R., and C. Málaga-Chuquitaype. 2021. Performance-based seismic design and assessment of rocking timber buildings equipped with inerters. Engineering Structures 248 (April): 113164. doi: 10.1016/j.engstruct.2021.113164.
  • Vigh, L. G., Á. Zsarnóczay, and T. Balogh. 2017. Eurocode conforming design of BRBF – Part I: Proposal for codification. Journal of Constructional Steel Research 135 (May 2016):265–76. doi:10.1016/j.jcsr.2017.04.010.
  • Wijesundara, K. K. 2012. Seismic design of steel concentric braced frame structures using direct displacement based design approach. The 2nd international conference on sustainable built environments (ICSBE2012), Sri Lanka.
  • Wijesundara, K. K., R. Nascimbene, and T. J. Sullivan. 2011. Equivalent viscous damping for steel concentrically braced frame structures. Bulletin of Earthquake Engineering 9 (5): 1535–58. doi: 10.1007/s10518-011-9272-4.
  • Wijesundara, K. K., and P. Rajeev. 2012. Direct displacement-based seismic design of steel concentric braced frame structures. Australian Journal of Structural Engineering 13 (3): 243–57. doi: 10.7158/S11-135.2012.13.3.
  • XLam NZ Limited. 2016. Designing With Xlam cross laminated timber.
  • Yahyai, M., and B. Rezayibana. 2015. A simplified methodology to determine damping for special concentrically-braced frames. International Journal of Steel Structures 15 (3): 541–55. doi: 10.1007/s13296-015-9003-9.
  • Yan, L., J. Gong, and Q. Zhang. 2018. Investigation of global equivalent damping and statistical relationship of displacement between nonlinear static and dynamic analysis of reinforced concrete frame structures. Earthquake Spectra 34 (3): 1311–38. doi: 10.1193/021517EQS031M.
  • Yang, B., and X. Lu. 2018. Displacement-based seismic design approach for prestressed precast concrete shear walls and its application. Journal of Earthquake Engineering 22 (10): 1836–60. doi: 10.1080/13632469.2017.1309607.
  • Zonta, D., C. Loss, M. Piazza, and P. Zanon. 2011. Direct displacement-based design of glulam timber frame buildings. Journal of Earthquake Engineering 15 (3): 491–510. doi: 10.1080/13632469.2010.495184.
  • Zsarnóczay, Á. 2013. Experimental and numerical investigation of buckling restrained braced frames for Eurocode conform design procedure development. Budapest, Hungary: Budapest University of Technology and Economics.