776
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Post-Earthquake Functionality Assessment of Urban Road Network Considering Emergency Response

, ORCID Icon, ORCID Icon &
Pages 2406-2431 | Received 05 Nov 2021, Accepted 16 Jul 2022, Published online: 22 Aug 2022

References

  • Adachi, T., and B. R. Ellingwood. 2009. Serviceability assessment of a municipal water system under spatially correlated seismic intensities. Computer-Aided Civil and Infrastructure Engineering 24 (4): 237–48. doi: 10.1111/j.1467-8667.2008.00583.x.
  • Al Mamun, A., and M. Saatcioglu. 2017. Seismic fragility curves for reinforced concrete frame buildings in Canada designed after 1985. Canadian Journal of Civil Engineering 44 (7). doi: 10.1139/cjce-2016-0388.
  • Alipour, A., and B. Shafei. 2016. Seismic resilience of transportation networks with deteriorating components. Journal of Structural Engineering (United States) 142 (8): 1–12. doi: 10.1061/(ASCE)ST.1943-541X.0001399.
  • Argyroudis, S., J. Selva, P. Gehl, and K. Pitilakis 2015. Systemic seismic risk assessment of road networks considering interactions with the built environment. Computer-Aided Civil and Infrastructure Engineering 30 (7): 524–40. doi: 10.1111/mice.12136.
  • Berche, B., C. Von Ferber, T. Holovatch, and Y. Holovatch. 2009. Resilience of public transport networks against attacks. European Physical Journal B 71 (1): 125–37. doi: 10.1140/epjb/e2009-00291-3.
  • Boakye, J., R. Guidotti, P. Gardoni, and C. Murphy. 2022. The role of transportation infrastructure on the impact of natural hazards on communities. Reliability Engineering and System Safety 219 (June 2021): 108184. doi: 10.1016/j.ress.2021.108184.
  • Bocchini, P., and D. M. Frangopol. 2012. Restoration of bridge networks after an earthquake: Multicriteria intervention optimization. Earthquake Spectra 28 (2): 427–55. doi: 10.1193/1.4000019.
  • Campbell, K. W., and Y. Bozorgnia. 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s. Earthquake Spectra 24 (1): 139–71. doi: 10.1193/1.2857546.
  • Chang, L., A. M. Asce, F. Peng, Y. Ouyang, A. M. Asce, A. S. Elnashai, B. F. S. AscesJr, and F. Asce. 2012. Bridge seismic retrofit program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure Systems 18 (June): 75–88. doi: 10.1061/(ASCE)IS.1943-555X.0000082.
  • Chang, L., A. S. Elnashai, B. F. Spencer, J. Song, and Y. Ouyang (2010). Transportations Systems Modeling and Applications in Earthquake Engineering Transportations Systems Modeling and Applications in Earthquake. In Urbana, IL: University of Illinois at Urbana-Champaign, Mid-America Earthquake Center Report No. 10–03, 10.
  • Chang, S. E., and N. Nojima. 2001. Measuring post-disaster transportation system performance: The 1995 Kobe earthquake in comparative perspective. Transportation Research Part A: Policy and Practice 35 (6): 475–94. doi: 10.1016/S0965-8564(00)00003-3.
  • Chang, S. E., M. Shinozuka, and J. E. Moore. 2000. Probabilistic earthquake scenarios: Extending risk analysis methodologies to spatially distributed systems. Earthquake Spectra 16 (3): 557–72. doi: 10.1193/1.1586127.
  • Chen, M., S. Mangalathu, and J. S. Jeon. 2021. Bridge fragilities to network fragilities in seismic scenarios: An integrated approach. Engineering Structures 237 (March): 112212. doi: 10.1016/j.engstruct.2021.112212.
  • Chen, A., C. Yang, S. Kongsomsaksakul, and M. Lee. 2007. Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Networks and Spatial Economics 7 (3): 241–56. doi: 10.1007/s11067-006-9012-5.
  • Chen, L., K. Zheng, W. Zhuang, H. Ma, and J. Zhang. 2012. Analytical investigation of bridge seismic vulnerability in Wenchuan earthquake. Journal of Southwest Jiaotong University 47 (4): 558–66. doi: 10.3969/j.0258-2724.2012.04.004.
  • Cho, J., Y. J. Lee, S. M. Lee, K. H. Song, and W. Suh. 2021. Analysis of macroscopic traffic network impacted by structural damage to bridges from earthquakes. Applied Sciences (Switzerland) 11 (7). doi: 10.3390/app11073226.
  • Chopra, S. S., T. Dillon, M. M. Bilec, and V. Khanna. 2016. A network-based framework for assessing infrastructure resilience: A case study of the London metro system. Journal of the Royal Society Interface 13 (118): 20160113. doi: 10.1098/rsif.2016.0113.
  • Chu, J. C., and S. C. Chen. 2016. Optimization of transportation-infrastructure-system protection considering weighted connectivity reliability. Journal of Infrastructure Systems 22 (1): 1–9. doi: 10.1061/(ASCE)IS.1943-555X.0000264.
  • Cimellaro, G. P., V. Arcidiacono, and A. M. Reinhorn. 2018. Disaster resilience assessment of building and transportation system. Journal of Earthquake Engineering 2469. doi: 10.1080/13632469.2018.1531090.
  • Cimellaro, G. P., C. Renschler, L. Arendt, M. Bruneau, and A. M. Reinhorn 2011. Community resilience index for road network systems. Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, July, 370–76.
  • Crowley, H., and J. J. Bommer. 2006. Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bulletin of Earthquake Engineering 4 (3): 249–73. doi: 10.1007/s10518-006-9009-y.
  • Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerische Mathematik 1 (1): 269–71. doi: 10.1007/BF01386390.
  • Dong, Y., and D. M. Frangopol. 2017. Probabilistic assessment of an interdependent healthcare–bridge network system under seismic hazard. Structure and Infrastructure Engineering 13 (1): 160–70. doi: 10.1080/15732479.2016.1198399.
  • Dong, Y., D. M. Frangopol, and D. Saydam. 2014. Sustainability of highway bridge networks under seismic hazard. Journal of Earthquake Engineering 18 (1): 41–66. doi: 10.1080/13632469.2013.841600.
  • Dueñas-osorio, L. A. (2005). Interdependent response of networked systems to natural hazards and intentional disruptions interdependent response of networked systems to natural hazards and intentional disruptions. PhD, Public Policy.December 215. http://www.google.co.uk/url?sa=t&rct=j&q=Interdependent+Response+of+Networked+Systems+to+Natural+Hazards+and+Intentional+Disruptions&source=web&cd=1&ved=0CCUQFjAA&url=http%3A%2F%2Fsmartech.gatech.edu%2Fjspui%2Fbitstream%2F1853%2F7546%2F1%2Fduenasosorio_le
  • Federal Emergency Management Agency (FEMA). 2012. Multi-Hazard loss estimation methodology (HAZUS-MH 2.1). Washington, DC: Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division.
  • Feng, K., Q. Li, and B. R. Ellingwood. 2020. Post-earthquake modelling of transportation networks using an agent-based model. Structure and Infrastructure Engineering 1–15. doi: 10.1080/15732479.2020.1713170.
  • Floyd, R. W. 1962. Algorithm 97: Shortest path. Communications of the ACM 5 (6): 345. doi: 10.1145/367766.368168.
  • Franchin, P., A. Lupoi, and P. E. Pinto. 2006. On the role of road networks in reducing human losses after earthquakes. Journal of Earthquake Engineering 10 (2): 195–206. doi: 10.1080/13632460609350593.
  • Frangopol, D. M., and P. Bocchini. 2012. Bridge network performance, maintenance and optimisation under uncertainty: Accomplishments and challenges. Structure and Infrastructure Engineering 8 (4): 341–56. doi: 10.1080/15732479.2011.563089.
  • Gardoni, P., K. M. Mosalam, and A. Der Kiureghian. 2003. Probabilistic seismic demand models and fragility estimates for RC bridges. Journal of Earthquake Engineering 7 (sup001): 79–106. doi: 10.1080/13632460309350474.
  • Giovinazzi, S., and A. Nicholson 2010. Transport network reliability in seismic risk analysis and management. 14th European Conference on Earthquake Engineering, Ohrid, Republic of Macedonia, June 2014. 933.
  • Gonçalves, L. A. P. J., and P. J. G. Ribeiro. 2020. Resilience of urban transportation systems: Concept, characteristics, and methods. Journal of Transport Geography 85 (April): 102727. doi: 10.1016/j.jtrangeo.2020.102727.
  • Goretti, A., and V. Sarli. 2006. Road network and damaged buildings in urban areas: Short and long-term interaction. Bulletin of Earthquake Engineering 4 (2): 159–75. doi: 10.1007/s10518-006-9004-3.
  • Guidotti, R., P. Gardoni, and Y. Chen. 2017. Network reliability analysis with link and nodal weights and auxiliary nodes. Structural Safety 65: 12–26. doi: 10.1016/j.strusafe.2016.12.001.
  • Günneç, D., and F. S. Salman. 2011. Assessing the reliability and the expected performance of a network under disaster risk. OR Spectrum 33 (3): 499–523. doi: 10.1007/s00291-011-0250-7.
  • Guo, A., Z. Liu, S. Li, and H. Li. 2017. Seismic performance assessment of highway bridge networks considering post-disaster traffic demand of a transportation system in emergency conditions. Structure and Infrastructure Engineering 13 (12): 1523–37. doi: 10.1080/15732479.2017.1299770.
  • Hsieh, C. H., and C. M. Feng. 2020. The highway resilience and vulnerability in Taiwan. Transport Policy 87 (July 2018): 1–9. doi: 10.1016/j.tranpol.2018.08.010.
  • Hu, Y. 1986. The attenuation relationship of ground motions in North China based on the Tangshan earthquake. China Civil Engineering Journal 19 (3): 3–12. https://doi.org/10.15951/j.tmgcxb.1986.03.001
  • Hyndman, R. J., and Y. Fan. 1996. Sample quantiles in statistical packages. American Statistician 50 (4). doi: 10.1080/00031305.1996.10473566.
  • Ip, W. H., and D. Wang. 2011. Resilience and friability of transportation networks: Evaluation, analysis and optimization. IEEE Systems Journal 5 (2): 189–98. doi: 10.1109/JSYST.2010.2096670.
  • Jayaram, N., and J. W. Baker. 2009. Correlation model for spatially distributed ground-motion intensities. Earthquake Engineering and Structural Dynamics 38 (15): 1687–708. doi: 10.1002/eqe.922.
  • Jayaram, N., and J. W. Baker. 2010. Efficient sampling and data reduction techniques for probabilistic seismic lifeline risk assessment. Earthquake Engineering and Structural Dynamics 39 (10). doi: 10.1002/eqe.988.
  • Jenelius, E. 2009. Network structure and travel patterns: Explaining the geographical disparities of road network vulnerability. Journal of Transport Geography 17 (3): 234–44. doi: 10.1016/j.jtrangeo.2008.06.002.
  • Karamlou, A., and P. Bocchini. 2016. Sequencing algorithm with multiple-input genetic operators: Application to disaster resilience. Engineering Structures 117: 591–602. doi: 10.1016/j.engstruct.2016.03.038.
  • Kawashima, K. 2012. Damage of bridges due to the 2011 great East Japan earthquake. Journal of Japan Association for Earthquake Engineering 12 (December 2014): 4_319–4_338. doi: 10.5610/jaee.12.4_319.
  • Khademi, N., B. Balaei, M. Shahri, M. Mirzaei, B. Sarrafi, M. Zahabiun, and A. S. Mohaymany. 2015. Transportation network vulnerability analysis for the case of a catastrophic earthquake. International Journal of Disaster Risk Reduction 12: 234–54. doi: 10.1016/j.ijdrr.2015.01.009.
  • Kilanitis, I., and A. Sextos. 2019. Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bulletin of Earthquake Engineering 17 (1): 181–210. doi: 10.1007/s10518-018-0457-y.
  • Kurauchi, F., N. Uno, A. Sumalee, and Y. Seto 2009. Network Evaluation Based on Connectivity Vulnerability. Transportation and Traffic Theory 2009: Golden Jubilee 637–49. https://doi.org/10.1007/978-1-4419-0820-9_31
  • Latora, V., and M. Marchiori. 2001. Efficient behavior of small-world networks. Physical Review Letters 87 (19). doi: 10.1103/PhysRevLett.87.198701.
  • Lee, R. G., and A. S. Kiremidjian. 2007. Uncertainty and correlation in seismic risk assessment of transportation systems. Dept. of Civil and Environmental Engineering, Stanford University, Pacific Earthquake Engineering Research Center, Richmond, California.
  • Liu, M., and D. M. Frangopol. 2006. Probability-based bridge network performance evaluation. Journal of Bridge Engineering 11 (5): 633–41. https://doi.org/10.1061/(asce)1084-0702(2006)11:5(633).
  • Liu, L., D. M. Frangopol, A. Mondoro, and D. Y. Yang. 2018. Sustainability-informed bridge ranking under scour based on transportation network performance and multiattribute utility. Journal of Bridge Engineering 23 (10): 4018082. doi: 10.1061/(asce)be.1943-5592.0001296.
  • Liu, L., D. Y. Yang, and D. M. Frangopol. 2020. Network-level risk-based framework for optimal bridge adaptation management considering scour and climate change. Journal of Infrastructure Systems 26 (1): 1–15. doi: 10.1061/(ASCE)IS.1943-555X.0000516.
  • Liu, K., C. Zhai, and Y. Dong. 2021. Optimal restoration schedules of transportation network considering resilience. Structure and Infrastructure Engineering 17 (8): 1141–54. doi: 10.1080/15732479.2020.1801764.
  • Lu, J., A. Gupte, and Y. Huang. 2018. A mean-risk mixed integer nonlinear program for transportation network protection. 265: 277–89.
  • Mander, J. 1999. Fragility curve development for assessing the seismic vulnerability of highway bridges. Research Progress And, August 1–10. http://www.mceer.buffalo.edu/publications/resaccom/99-SP01/RAfullbook.pdf#page=95
  • Murachi, Y., M. J. Orikowski, X. Dong, and M. Shinozuka. 2003. Fragility analysis of transportation networks. Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures 5057 (August 2003): 655. doi: 10.1117/12.508501.
  • Murray-Tuite, P. M., and H. S. Mahmassani. 2004. Methodology for determining vulnerable links in a transportation network. Transportation Research Record 1882 (1): 88–96. doi: 10.3141/1882-11.
  • National Institute of Standards and Technology (NIST). 2016. NIST special publication 1190: community resilience planning guide for buildings and infrastructure systems, volume I. National institute of standards and technology, I, 126. https://doi.org/10.6028/NIST.SP.1190v1
  • National Research Council (NRC). 2011. National earthquake resilience: research, implementation, and outreach. National Academies Press.
  • Nielson, B. G., and R. DesRoches. 2007. Analytical seismic fragility curves for typical bridges in the central and southeastern United States. Earthquake Spectra 23 (3): 615–33. doi: 10.1193/1.2756815.
  • Okabe, A., T. Satoh, T. Furuta, A. Suzuki, and K. Okano. 2008. Generalized network Voronoi diagrams: Concepts, computational methods, and applications. International Journal of Geographical Information Science 22 (9): 965–94. doi: 10.1080/13658810701587891.
  • Omer, M., A. Mostashari, and R. Nilchiani. 2013. Assessing resilience in a regional road-based transportation network. International Journal of Industrial and Systems Engineering 13 (4): 389–408. doi: 10.1504/IJISE.2013.052605.
  • Osei-Asamoah, A., and N. E. Lownes 2014. Complex network method of evaluating resilience in surface transportation networks. Transportation Research Record 2467 (2467): 120–28. doi: 10.3141/2467-13.
  • Rohr, A., P. Priesmeier, K. Tzavella, and A. Fekete. 2020. System criticality of road network areas for emergency management services—spatial assessment using a tessellation approach. Infrastructures 5 (11): 1–29. doi: 10.3390/infrastructures5110099.
  • Rokneddin, K., J. Ghosh, L. Dueñas-Osorio, and J. E. Padgett. 2013. Bridge retrofit prioritisation for ageing transportation networks subject to seismic hazards. Structure and Infrastructure Engineering 9 (10): 1050–66. doi: 10.1080/15732479.2011.654230.
  • Sakuraba, C. S., A. C. Santos, and C. Prins. 2016. Work-troop scheduling for road network accessibility after a major earthquake. Electronic Notes in Discrete Mathematics 52: 317–24. doi: 10.1016/j.endm.2016.03.042.
  • San Francisco Bay Area Planning and Urban Research Association (SPUR) (2009). “The Resilient City: Defining what San Francisco Needs from Its Seismic Mitigation Policies.” SPUR Report, SPUR Board of Directors.
  • Schanack, F., G. Valdebenito, and J. Alvial. 2012. Seismic damage to bridges during the 27 February 2010 magnitude 8.8 Chile earthquake. Earthquake Spectra 28 (1): 301–15. doi: 10.1193/1.3672424.
  • Sextos, A., I. Kilanitis, N. Theodoulidis, and G. Mylonakis. 2017. Seismic resilience assessment of the Western. June.
  • Snelder, M., H. J. van Zuylen, and L. H. Immers. 2012. A framework for robustness analysis of road networks for short term variations in supply. Transportation Research Part A: Policy and Practice 46 (5): 828–42. doi: 10.1016/j.tra.2012.02.007.
  • Sohn, J. 2006. Evaluating the significance of highway network links under the flood damage: An accessibility approach. Transportation Research Part A: Policy and Practice 40 (6): 491–506. doi: 10.1016/j.tra.2005.08.006.
  • Stearns, M., and J. E. Padgett. 2012. Impact of 2008 Hurricane Ike on bridge infrastructure in the Houston/Galveston region. Journal of Performance of Constructed Facilities 26 (4): 441–52. doi: 10.1061/(ASCE)CF.1943-5509.0000213.
  • Su, G., W. Qi, S. Zhang, T. Sim, X. Liu, R. Sun, L. Sun, and Y. Jin. 2015. An integrated method combining remote sensing data and local knowledge for the large-scale estimation of seismic loss risks to buildings in the context of rapid socioeconomic growth: A case study in Tangshan, China. Remote Sensing 7 (3): 2543–601. doi: 10.3390/rs70302543.
  • Sullivan, J. L., D. C. Novak, L. Aultman-Hall, and D. M. Scott. 2010. Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach. Transportation Research Part A: Policy and Practice 44 (5): 323–36. doi: 10.1016/j.tra.2010.02.003.
  • Tak, H., W. Suh, and Y. Lee. 2019. System-level seismic risk assessment of bridge transportation networks employing probabilistic seismic hazard analysis.
  • Tamima, U., D. Ph, L. Chouinard, D. Sc, and M. Asce. 2017. Systemic seismic vulnerability of transportation networks and emergency facilities. Journal of Infrastructure Systems (4): 1–14. doi: 10.1061/(ASCE)IS.1943-555X.0000392.
  • Tantala, M. W., G. J. P. Nordenson, G. Deodatis, and K. Jacob. 2008. Earthquake loss estimation for the New York City metropolitan region. Soil Dynamics and Earthquake Engineering 28 (10–11): 812–35. doi: 10.1016/j.soildyn.2007.10.012.
  • Taylor, M. A. P., and Susilawati. 2012. Remoteness and accessibility in the vulnerability analysis of regional road networks. Transportation Research Part A: Policy and Practice 46 (5): 761–71. doi: 10.1016/j.tra.2012.02.008.
  • Toma-Danila, D., I. Armas, and A. Tiganescu. 2020. Network-risk: An open GIS toolbox for estimating the implications of transportation network damage due to natural hazards, tested for Bucharest, Romania. Natural Hazards and Earth System Sciences 20 (5): 1421–39. doi: 10.5194/nhess-20-1421-2020.
  • Twumasi-Boakye, R., and J. O. Sobanjo. 2018. Resilience of regional transportation networks subjected to hazard-induced bridge damages. Journal of Transportation Engineering Part A: Systems 144 (10): 1–13. doi: 10.1061/JTEPBS.0000186.
  • Twumasi-Boakye, R., J. O. Sobanjo, S. K. Inkoom, and E. E. Ozguven. 2018. Senior community resilience with a focus on critical transportation infrastructures: An accessibility-based approach to healthcare. Transportation Research Record 2672 (12): 103–15. doi: 10.1177/0361198118793520.
  • Vaziri, P., R. Davidson, P. Apivatanagul, and L. Nozick. 2012. Identification of optimization-based probabilistic earthquake scenarios for regional loss estimation. Journal of Earthquake Engineering 16 (2): 296–315. doi: 10.1080/13632469.2011.597486.
  • Wang, Z., and G. Jia. 2020. Efficient sample-based approach for effective seismic risk mitigation of transportation networks transportation networks. doi:10.1080/23789689.2019.1598756.
  • Wang, M., and T. Takada. 2005. Macrospatial correlation model of seismic ground motions. Earthquake Spectra 21 (4): 1137–56. doi: 10.1193/1.2083887.
  • Xu, Z., X. Lu, H. Guan, Y. Tian, and A. Ren. 2016. Simulation of earthquake-induced hazards of falling exterior non-structural components and its application to emergency shelter design. Natural Hazards 80 (2): 935–50. doi: 10.1007/s11069-015-2005-2.
  • Yin, Z. 2010. Seismic performance evaluation of existing buildings. Journal of Earthquake Engineering and Engineering Vibration 30 (1): 36–45. https://doi.org/10.13197/j.eeev.2010.01.014
  • Yu, Y. C., and P. Gardoni. 2022. Predicting road blockage due to building damage following earthquakes. Reliability Engineering and System Safety 219 (July 2021): 108220. https://doi.org/10.1016/j.ress.2021.108220
  • Zanini, M. A., F. Faleschini, P. Zampieri, C. Pellegrino, G. Gecchele, M. Gastaldi, and R. Rossi. 2017. Post-quake urban road network functionality assessment for seismic emergency management in historical centres. Structure and Infrastructure Engineering 13 (9): 1117–29. doi: 10.1080/15732479.2016.1244211.
  • Zhang, W., and N. Wang. 2016. Resilience-based risk mitigation for road networks. Structural Safety 62: 57–65. doi: 10.1016/j.strusafe.2016.06.003.
  • Zhang, W., N. Wang, and C. Nicholson 2017. Resilience-Based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering 13 (11): 1404–13. doi: 10.1080/15732479.2016.1271813.
  • Zhang, H., Y. Xu, and X. Wen. 2015. Optimal shortest path set problem in undirected graphs. Journal of Combinatorial Optimization 29 (3). doi: 10.1007/s10878-014-9766-5.
  • Zhou, Y., J. Wang, and H. Yang. 2019. Resilience of transportation systems: Concepts and comprehensive review. IEEE Transactions on Intelligent Transportation Systems 20 (12): 4262–76. doi: 10.1109/TITS.2018.2883766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.