608
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnitude Type Conversion Models for Earthquakes in Turkey and Its Vicinity with Machine Learning Algorithms

&
Pages 2533-2554 | Received 23 Mar 2022, Accepted 20 Jul 2022, Published online: 20 Sep 2022

References

  • AFAD, 2020. Earthquake catalogues. https://deprem.afad.gov.tr/ Accessed July 15, 2020.
  • Akgun, A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at Izmir, Turkey. Landslides 9 (1): 93–106. doi: 10.1007/s10346-011-0283-7.
  • Akkar, S., Ö. Kale, A. Yakut, and U. Çeken. 2018. Ground-motion characterization for the probabilistic seismic Hazard Assessment in Turkey. Bulletin of Earthquake Engineering 16: 3439–63. doi: 10.1007/s10518-017-0101-2.
  • Alkan, H., and H. Çınar. 2020. The lithospheric structure underneath the circum black sea: Teleseismic receiver functions and Rayleigh wave phase velocity analysis. Journal of Asian Earth Sciences 206: 104652. doi: 10.1016/j.jseaes.2020.104652.
  • Alkan, H., H. Çınar, and S. Oreshin. 2020. Lake Van (Southeastern Turkey) experiment: Receiver function analyses of lithospheric structure from teleseismic observations. Pure and Applied Geophysics 177: 3891–909. doi: 10.1007/s00024-020-02447-7.
  • Atakan, K., A. Ojeda, M. Meghraoui, A. A. Barka, M. Erdik, and A. Bodare. 2002. Seismic Hazard in Istanbul following the 17 August 1999 İzmit and 12 November 1999 Düzce Earthquakes. Bulletin of the Seismological Society of America 92 (1): 466–82. doi: 10.1785/0120000828.
  • Balkaya, Ç. 2013. An Implementation of differential evolution algorithm for inversion of geoelectrical data. Journal of Applied Geophysics 98: 160–75. doi: 10.1016/j.jappgeo.2013.08.019.
  • Bayrak, Y., S. Öztürk, H. Çınar, D. Kalafat, T. M. Tsapanos, G. C. Koravos, and G. A. Leventakıs. 2009. Estimating Earthquake Hazard parameters from instrumental data for different regions in and around Turkey. Engineering Geology 105: 200–10. doi: 10.1016/j.enggeo.2009.02.004.
  • Bayrak, E., Ş. Yılmaz, and Y. Bayrak. 2017. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey. Journal Of Asıan Earth Scıences 138: 1–11.
  • Bayrak, E., Ş. Yılmaz, M. Softa, T. Türker, and Y. Bayrak. 2015. Earthquake hazard analysis for East Anatolian fault Zone, Turkey. Natural Hazards 76 (2): 1063–77. doi: 10.1007/s11069-014-1541-5.
  • Bisztricsany, E. 1958. A new method for the determination of the magnitude of Earthquakes. Geofiz. Kozlemen 7: 69–96.
  • Breiman, L., J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. Wadsworth Int. Group 37 (15): 237–51.
  • Büyük, E., E. Zor, and A. Karaman. 2020. Joint modeling of Rayleigh wave dispersion and H/V spectral ratio using Pareto-based multiobjective particle swarm optimization. TURKISH JOURNAL OF EARTH Sciences 29: 684–95. doi: 10.3906/yer-2001-15.
  • Carroll, R. J., and D. Ruppert. 1996. The use and misuse of orthogonal regression in linear errors in variables models. The American Statistician 50 (1): 1–6.
  • Chen, Z., and J. C. Maun. 2000. Artificial neural network approach to single-ended fault locator for transmission lines. IEEE Transactions on Power Systems 15: 370–75. doi: 10.1109/59.852146.
  • Chen, W., H. Shahabi, A. Shirzadi, H. Hong, A. Akgun, Y. Tian, J. Liu, A.-X. Zhu, and S. Li. 2019. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bulletın of Engıneerıng Geology and the Envıronment 78 (6): 4397–419. doi: 10.1007/s10064-018-1401-8.
  • Ching, T., D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, C. S. Greene, P.-M. Agapow, M. Zietz, and M. M. Hoffman. 2018. Opportunities and obstacles for deep learning in Biology and medicine. Journal of the Royal Society Interface 15: 141. doi: 10.1098/rsif.2017.0387.
  • Çıvgın, B. 2015. Regression relations for conversion of various magnitude types and catalogs for the earthquakes of Turkey and Vicinity. Seismological Research Letters 86: 876–89. doi: 10.1785/0220140154.
  • Coban, K. H. 2021.The Applications of Artificial Intelligence for Magnitude Types Conversion and Peak Ground Acceleration (PGA) Prediction of Earthquakes. Phd Dissertation, Karadeniz Technical University, Institute of Science, Trabzon.
  • Coban, K. H., and N. Sayil. 2019. Evaluation of earthquake recurrences with different distribution models in western Anatolia. Journal of Seismology 23: 1405–22. doi: 10.1007/s10950-019-09876-5.
  • Coban, K. H., and N. L. Sayil. 2020a. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones. Arabıan Journal of Geoscıences 13: 18.
  • Coban, K. H., and N. Sayil. 2020b. Conditional probabilities of hellenic Arc Earthquakes based on different distribution models. Pure and Applied Geophysics 177: 5133–45. doi: 10.1007/s00024-020-02576-z.
  • Dede, T., M. Kankal, A. R. Vosoughi, M. Grzywinski, and M. Kripka. 2019. Artificial Intelligence Applications in Civil Engineering. Advances in Civil Engineering 2019: 1–3. doi: 10.1155/2019/8384523.
  • Deniz, A., and M. S. Yucemen. 2010. Magnitude conversion problem problem for Turkish earthquake data. Natural Hazards 55 (2): 33–352. doi: 10.1007/s11069-010-9531-8.
  • Dhanya, J., and S. T. G. Raghukanth. 2020. Neural network-based hybrid ground motion prediction equations for Western Himalayas and North-Eastern India. Acta Geophysica 68: 303–24. doi: 10.1007/s11600-019-00395-y.
  • Dramsch, J. S. 2020. 70 years of machine learning in geoscience in review. Advance in Geophysics 61: 1–55.
  • Dziewonski, A. M., T. A. Chou, and J. H. Woodhouse. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research 86: 2825–52. doi: 10.1029/JB086iB04p02825.
  • Ekström, G., M. Nettles, and A. M. Dziewonski. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200-201: 1–9. doi: 10.1016/j.pepi.2012.04.002.
  • Emre, Ö., T. Y. Duman, S. Özalp, H. Elmacı, Ş. Olgun, and F. Şaroğlu. 2013. 1/1.250.000 scaled Turkey active fault map. Mineral research and exploration general directorate. Special Publication Series-30, Ankara-Turkey.
  • Emre, Ö., T. Y. Duman, S. Özalp, Şaroğlu, F., Olgun, Ş., Elmacı, H., and Çan, T. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering 16: 3229–75. doi: 10.1007/s10518-016-0041-2.
  • Erdik, M., Y. A. Biro, T. Onur, K. Sesetyan, and G. Birgoren. 1999. Assessment of Earthquake Hazard in Turkey and neighboring regions. Annals of Geophysics 42: 1125–38. doi: 10.4401/ag-3773.
  • Ezzelarab, M., K. Y. Ibrahim, and A. A. Mohamed. 2021. Earthquake magnitude regression relationships for Sudan territory. Journal of African Earth Sciences 183: 104326. doi: 10.1016/j.jafrearsci.2021.104326.
  • Giardini, D., L. Danciu, M. Erdik, K. Şeşetyan, M. B. Demircioğlu Tümsa, S. Akkar, L. Gülen, and M. Zare. 2018. Seismic hazard map of the Middle East. Bullettin of Earthquake Engineering 16: 3567–70. doi: 10.1007/s10518-018-0347-3.
  • Göktürkler, G., and Ç. Balkaya. 2012. Inversion of self-potential anomalies caused by simple geometry bodies using global optimization algorithms. Journal of Geophysics and Engineering 9: 498–507. doi: 10.1088/1742-2132/9/5/498.
  • Güllü, H., and E. Erçelebi. 2007. A neural network approach for attenuation relationships: An application using strong-ground-motion data from Turkey. Engineering Geology 93 (3): 65–81. doi: 10.1016/j.enggeo.2007.05.004.
  • Gutenberg, B. 1945a. Amplitudes of surface waves and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America 35: 3–12. doi: 10.1785/BSSA0350010003.
  • Gutenberg, B. 1945b. Magnitude Determination of Deep-Focus Earthquakes. Bulletin of the Seismological Society of America 35: 117–30. doi: 10.1785/BSSA0350030117.
  • Hanks, T. C., and H. Kanamori. 1979. A moment magnitude scale. Journal of Geophysical Research 84: 2348–50. doi: 10.1029/JB084iB05p02348.
  • Irmak, T. S. 2013. Focal mechanisms of small-moderate earthquakes in Denizli Graben (SW Turkey). Earth Planets And Space 65 (9): 943–55. doi: 10.5047/eps.2013.05.011.
  • Isik, E., Y. L. Ekinci, N. Sayil, A. Buyuksarac, and M. C. Aydin. 2021. Time-dependent model for earthquake occurrence and effects of design spectra on structural performance: A case study from the North Anatolian Fault Zone, Turkey. Turkish Journal of Earth Sciences 30 (2): 215–34. doi: 10.3906/yer-2004-20.
  • JemeÏJemei, S., D. Hissel, M.-C PÉraPera, and J. M. Kauffmann 2008. A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Transactions on Industrial Electronics 55 (1): 437–47. doi:10.1109/TIE.2007.896480.
  • Kadirioğlu, F. T., and R. F. Kartal. 2016. The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near Vicinity (1900–2012). Turkish Journal of Earth Science 25 (4): 300–10. doi: 10.3906/yer-1511-7.
  • Kahraman, H. T. 2014. Metaheuristic linear modeling technique for estimating the excitation current of a synchronous motor. Turkish Journal of Electrical Engineering & Computer Sciences 22: 1637–52. doi: 10.3906/elk-1301-11.
  • Karaboga, N., and F. Latifoglu. 2013. Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony–ABC-algorithm. Digital Signal Processing 23 (3): 1051–58. doi: 10.1016/j.dsp.2012.09.015.
  • Kıncal, C., A. Akgun, and M. Y. Koca. 2009. Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environmental Earth Sciences 59 (4): 745–56. doi: 10.1007/s12665-009-0070-0.
  • KOERI-RETMC, 2020. Earthquake catalogues. http://www.koeri.boun.edu.tr/sismo/zeqdb/ Accessed July 15, 2020.
  • Kotsiantis, S. B. 2013. Decision Trees: A Recent Overview. Artificial Intelligence Review 39 (4): 261–83. doi: 10.1007/s10462-011-9272-4.
  • Kumar, R., R. B. S. Yadav, and S. Castellaro. 2020. Regional Earthquake magnitude conversion relations for the Himalayan seismic belt. Seismological Research Letters 91 (6): 3195–207. doi: 10.1785/0220200204.
  • Kuyuk, H. S., E. Yıldırım, E. Dogan, and G. Horasan. 2011. An unsupervised learning algorithm: Application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul. Natural Hazards and Earth System Sciences 11 (1): 93–100. doi: 10.5194/nhess-11-93-2011.
  • Lary, D. J., A. H. Alavi, A. H. Gandomi, and A. L. Walker. 2016. Machine learning in geosciences and remote sensing. Geoscience Frontiers 7: 1–3. doi: 10.1016/j.gsf.2015.07.003.
  • Ludbrook, J. 2010. Linear regression analysis for comparing two measurers or methods of measurement: but which regression? Clinical and Experimental Pharmacology and Physiology 37 (7): 692–99. doi: 10.1111/j.1440-1681.2010.05376.x.
  • Matlab. 2018. R2018a. Natick, Massachusetts: The MathWorks Inc.
  • Mousavi, S. M., and G. C. Beroza. 2020. A machine‐learning approach for earthquake magnitude estimation. Geophysical Research Letters 47. doi: 10.1029/2019GL085976.
  • Ochoa, L. H., L. F. Niño, and C. A. Vargas. 2017. Fast magnitude determination using a single seismological station record implementing machine learning techniques. Geodesy and Geodynamics 9: 34–41. doi: 10.1016/j.geog.2017.03.010.
  • Ozer, C., E. Gok, and O. Polat. 2018. Three-dimensional seismic velocity structure of the aegean region of Turkey from local earthquake tomography. Annals of Geophysics 61: 1. doi: 10.4401/ag-7543.
  • Ozer, C., M. H. Ozyazicioglu, E. Gok, and O. D. Polat. 2019. Imaging the crustal structure throughout the East Anatolian fault zone, Turkey, by local Earthquake Tomography. Pure and Applıed Geophysics 176 (6): 2235–61. doi: 10.1007/s00024-018-2076-6.
  • Öztürk, S. 2011. Characteristics of seismic activity in the Western, Central and Eastern parts of the North anatolian fault zone, Turkey: Temporal and spatial analysis. Acta Geophysica 59: 209–38. doi: 10.2478/s11600-010-0050-5.
  • Öztürk, S., Y. Bayrak, H. Çınar, G. C. Koravos, and T. M. Tsapanos. 2008. A quantitative appraisal of earthquake hazard parameters computed from Gumbel I method for different regions in and around Turkey. Natural Hazards 47 (3): 471–95. doi: 10.1007/s11069-008-9234-6.
  • Öztürk, S., M. R. Ghassemi, M. Sarı, S. Öztürk, Y. Bayrak, H. Çınar, G. C. Koravos, and T. M. Tsapanos. 2020. A comparison of alternative curve fitting techniques for different earthquake fault parameters of Iranian earthquakes. Earth Sciences Research Journal 24 (4): 459–72. doi: 10.15446/esrj.v24n4.72068.
  • Pan, H., and H. Zhou. 2020. Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce. Electronic Commerce Research 20: 297–320. doi: 10.1007/s10660-020-09409-0.
  • Pekşen, E., T. Yas, A. Y. Kayman, and C. Özkan. 2011. Application of particle swarm optimization on self-potential data. Journal of Applied Geophysics 75 (2): 305–18. doi: 10.1016/j.jappgeo.2011.07.013.
  • Pekşen, E., T. Yas, and A. Kıyak. 2014. 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization. Pure and Applied Geophysics 171: 2371–89. doi: 10.1007/s00024-014-0802-2.
  • Polat, O., E. Gok, and D. Yilmaz. 2008. Earthquake hazard of aegean extension region, Turkey. Turkish Journal of Earth Sciences 17: 593–614.
  • Rahman, A. U., A. Rasheed, F. A. Najam, S. Zaman, I. A. Rana, F. Aslam, and S. U. Khan. 2021. An updated earthquake catalogue and source model for seismic hazard analysis of Pakistan. Arabian Journal for Science and Engineering 46: 5219–41. doi: 10.1007/s13369-021-05439-4.
  • Ramkrishnan, R., K. Sreevalsa, and T. G. Sitharam. 2022. Strong motion data based regional ground motion prediction equations for north east India based on non-linear regression models. Journal of Earthquake Engineering 26 (6): 2927–47. doi: 10.1080/13632469.2020.1778586.
  • Richter, C. F. 1935. An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America 25: 1–32. doi: 10.1785/BSSA0250010001.
  • Sayil, N. 2014. Evaluation of the seismicity for the Marmara region with statistical approaches. Acta Geophysica 49 (3): 265–81.
  • Sayil, N., and I. Osmansahin. 2008. An investigation of seismicity for western anatolia. Natural Hazards 44 (1): 51–64. doi: 10.1007/s11069-007-9141-2.
  • Scordilis, E. M. 2006. Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology 10: 225–36. doi: 10.1007/s10950-006-9012-4.
  • Selçuk, L., A. Z. Selçuk, and T. Beyaz. 2010. Probabilistic Seismic hazard assessment for Lake Van Basin, Turkey. Natural Hazards 54: 949–65. doi: 10.1007/s11069-010-9517-6.
  • Sertçelik, F. 2012. Estimation of Coda wave attenuation in the East Anatolia Fault Zone, Turkey. Pure and Applied Geophysics 169: 1189–204. doi: 10.1007/s00024-011-0368-1.
  • Sertçelik, F., and M. Guleroglu. 2017. Coda wave attenuation characteristics for North Anatolian Fault one, Turkey. Open Geoscıences 9 (1): 480–90.
  • Sesetyan, K., M. B. Demircioglu, T. Y. Duman, T. Çan, S. Tekin, T. E. Azak, and Ö. Z. Fercan. 2018. A probabilistic seismic hazard assessment for the Turkish territory-part I: The area source model. Bulletin of Earthquake Engineering 16: 3367–97. doi: 10.1007/s10518-016-0005-6.
  • Sianko, I., Z. Ozdemir, S. Khoshkholghi, Garcia, R., Hajirasouliha, I., Yazgan, U., and Pilakoutas, K. 2020. A practical probabilistic earthquake hazard analysis tool: Case study marmara Region. Bulletin of Earthquake Engineering 18: 2523–55. doi: 10.1007/s10518-020-00793-4.
  • Singh, B., P. Kumar, N. Sharma, and K. P. Sharma 2020. Sales forecast for amazon sales with time series modeling. 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 38–43. doi:10.1109/ICPC2T48082.2020.9071463.
  • Statgraph, 2005. Statgraphics 2005. Centurion XV, User Manual.
  • Tang, C., L. Zhu, and R. Huang. 2016. Empirical MW-ML, mb, and Ms Conversions in western China. Bulletin of the Seismological Society of America 106 (6): 2614–23. doi: 10.1785/0120160148.
  • Ulusay, R., E. Tuncay, H. Sonmez, and C. Gokceoglu. 2004. An attenuation relationship based on turkish strong motion data and Iso-acceleration map of Turkey. Engineering Geology 74: 265–91. doi: 10.1016/j.enggeo.2004.04.002.
  • Uzlu, E., M. I. Kömürcü, M. Kankal, T. Dede, and H. T. Öztürk. 2014. Prediction of berm geometry using a setof laboratory tests combined with teaching–learning-based optimization and artificial bee colony algorithms. Applied Ocean Research 48: 103–13. doi: 10.1016/j.apor.2014.08.002.
  • Valentine, A. P., and L. M. Kalnins. 2016. An introduction to learning algorithms and potential applications in geomorphometry and earth surface dynamics. Earth Surface Dynamics 4: 445–60. doi: 10.5194/esurf-4-445-2016.
  • Vapnik, V. N. 1995. The Nature of Statistical Learning, Theory. New York: Springer.
  • Yaghmaei-Sabegh, S. 2018. Earthquake ground-motion duration estimation by using of general regression neural network. Scientia Iranica 25 (5): 2425–39.
  • Yavuz, E., F. Sertçelik, H. Livaoğlu, H. Woith, and B. Lühr. 2019. Discrimination of quarry blasts from tectonic events in the Armutlu Peninsula, Turkey. Journal of Seismology 23: 59–76. doi: 10.1007/s10950-018-9793-2.
  • Yilmaz, B., E. Aras, M. Kankal, and S. Nacar. 2019. Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches. Acta Geophysica 67: 1693–705. doi: 10.1007/s11600-019-00374-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.