217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Full-Scale Shake Table Tests of a Reinforced Concrete Building Equipped with a Novel Servo-Hydraulic Active Mass Damper

, , , , , , , ORCID Icon & show all
Pages 2702-2725 | Received 15 Feb 2022, Accepted 04 Aug 2022, Published online: 19 Sep 2022

References

  • Abe, M. 1996. Semi-active tuned mass damper for seismic protection of civil structures. Earthquake Engineering & Structural Dynamics 25 (7): 743–49. doi: 10.1002/(SICI)1096-9845(199607)25:7<743::AID-EQE579>3.0.CO;2-S.
  • Abé, M. 1996. Semi-Active tuned mass dampers for seismic protection of civil structures. Earthquake Engineering And Structural Dynamics 25 (7): 743–49.
  • Aiken, I. 1996. Passive energy dissipation – hardware and applications, symposium on passive energy dissipation systems for new and existing buildings. Los Angeles. July.
  • Calvi, P. M., and G. M. Calvi. 2018. Historical development of friction-based seismic isolation systems. Soil Dynamics and Earthquake Engineering 106: 14–30. doi: 10.1016/j.soildyn.2017.12.003.
  • Chu, S., T. Soong, and A. Reinhorn. 2005. Active hybrid and semi-active structural control. England: John Wiley and Sons, Ltd.
  • Cinitha, P. U. 2014. Enhancing the seismic response of buildings with energy dissipation methods-an overview. Journal of Civil Engineering Research 4 (2A): 17–22.
  • Cinquemani, S., G. Diana, L. Fossati, and F. Ripamonti. 2016. A smart structure for wind tunnel investigation of a bridge deck’s vortex-induced torsional motion. Mechatronics 33: 108–20. doi: 10.1016/j.mechatronics.2015.11.003.
  • Connor, J., and S. Laflamme. 2014. Structural motion engineering. Switzerland: Springer International Publishing.
  • Constantinou, M. C., T. T. Soong, G. F. Dargush. 1998. Passive energy dissipation systems for structural design and retrofit. US: Multidisciplinary Center for Earthquake Engineering Research.
  • Constantinou, M. C., and M. D. Symans. 1993. Seismic response of structures with supplemental damping. The Structural Design Of Tall Buildings 2 (2): 77–92. doi: 10.1002/tal.4320020202.
  • De Roeck, G., and G. Degrande. 2011. A versatile active mass damper for structural vibration control.
  • Dyke, S., B. Spencer, P. Quast, D. KaspariJr, and M. Sain. 1996. Implementation of an active mass driver using acceleration feedback control. Computer-Aided Civil and Infrastructure Engineering 11 (5): 305–23. doi: 10.1111/j.1467-8667.1996.tb00445.x.
  • Felix, W., J. Distl and M. Ma´slanka. 2013. Semi-Active TMD Concept for Volgograd Bridge. New York, US: Springer.
  • FEMA P-366/April. 2017. Hazus. Estimated annualized earthquake losses for the United States.
  • Forrai, A., S. Hashimoto, A. Isojima, H. Funato, and K. Kamiyama. 2001. Gray box identification of flexible structures: Application to robust active vibration suppression control. Earthquake Engineering & Structural Dynamics 30 (8): 1203–20. doi: 10.1002/eqe.59.
  • Lu, L.Y., T.-K. Lin, R.-J. Jheng, and H.-H. Wu. 2018. Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures. Journal of Sound and Vibration 412: 184–206. doi: 10.1016/j.jsv.2017.09.029.
  • Ma´slanka, M., and F. Weber. 2013. Precise stiffness control with MR dampers. New York, US: Springer.
  • Mariantonieta, G. S., and A. Hojjat. 2013. Tuned mass dampers. Archives of Computational Methods in Engineering 20 (4): 419–31. doi: 10.1007/s11831-013-9091-7.
  • Moutinho, C., A. Cunha, and E. Caetano. 2011. Implementation of an active mass driver for increasing damping ratios of the laboratorial model of a building. Journal of Theoretical and Applied Mechanics 49: 791–806.
  • Nakamura, Y., K. Tanaka, M. Nakayama, and T. Fujita. 2001. Hybrid mass dampers using two types of electric servomotors: AC servomotors and linear-induction servomotors. Earthquake Engineering & Structural Dynamics 30 (11): 1719–43. doi: 10.1002/eqe.89.
  • Nguyen, X. B., T. Komatsuzaki, Y. Iwata, and H. Asanuma. 2018. Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction. Mechanical Systems and Signal Processing 101: 449–66. doi: 10.1016/j.ymssp.2017.08.040.
  • Patil, S. J., and G. R. Reddy. 2012. State of art review - base isolation systems for structures. International Journal of Emerging Technology and Advanced Engineering 2 (7): 438–53.
  • Ripamonti, F., E. Leo, and F. Resta. 2016. Experimental and numerical comparison between two nonlinear control logics. International Journal of Applied Mechanics 8 (5): art. no. 1650061. doi: 10.1142/S1758825116500617.
  • Ripamonti, F., L. Orsini, and F. Resta. 2017. A nonlinear sliding surface in sliding mode control to reduce vibrations of a three-link flexible manipulator. Journal of Vibration and Acoustics, Transactions of the ASME 139 (5): art. no. 051005. doi: 10.1115/1.4036502.
  • Rosti, M., S. Cii, A. Bussini, P. M. Calvi, and Ripamonti, F. 2022. Design and validation of a hardware-in-the-loop test bench for the performance evaluation of an active mass damper. Journal of Vibration and Control, 1–14.
  • Saaed, T. E., G. Nikolakopoulos, J.-E. Jonasson, and H. Hedlund. 2015. A state-of-the-art review of structural control systems. Journal of Vibration and Control 21 (5): 919–37. doi: 10.1177/1077546313478294.
  • Saito, T., K. Shiba, and K. Tamura. 2001. Vibration control characteristics of a hybrid mass damper system installed in tall buildings. Earthquake Engineering & Structural Dynamics 30 (11): 1677–96. doi: 10.1002/eqe.87.
  • Serra, M., F. Resta, and F. Ripamonti. 2017. Dependent modal space control: Experimental test rig. JVC/Journal of Vibration and Control 23 (15): 2418–29. doi: 10.1177/1077546315616699.
  • Symans, M. D., and M. C. Constantinou. 1999. Semi-active control systems for seismic protection of structures: A state-of-the-art review. Engineering Structures 21 (6): 469–87. doi: 10.1016/S0141-0296(97)00225-3.
  • Weber, F. 2013. Dynamic characteristics of controlled MR-STMDs of Wolgograd bridge. Smart Materials and Structures 22 (9): 95008 doi: 10.1088/0964-1726/22/9/095008.
  • Weber, F. 2014. Semi-active vibration absorber based on real-time controlled MR damper. Mechanical Systems and Signal Processing 46 (2): 272–88. doi: 10.1016/j.ymssp.2014.01.017.
  • Weber, F., and C. Boston. 2010. An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper. Smart Materials and Structures 20 (1): 11.
  • Weber, F., C. Boston, and M. Ma´slanka. 2011 11. An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper. Smart Materials and Structures 20 (1): 015012. doi: 10.1088/0964-1726/20/1/015012.
  • Weber, F., H. Distl, and C. Braun. 2017. Semi-active base isolation of civil engineering structures based on optimal viscous damping and zero dynamic stiffness.
  • Weber, F., H. Distl, S. Fischer, and C. Braun. 2016. MR damper controlled vibration absorber for enhanced mitigation of harmonic vibrations. Actuators December 5 (4): 27. doi:10.3390/act5040027.
  • Weber, F., and M. Ma´slanka. 2012 17. Frequency and damping adaptation of a TMD with controlled MR damper. Smart Materials and Structures 21 (5): 055011. doi: 10.1088/0964-1726/21/5/055011.
  • Xilin, L., L. Peizhen, X. Guo, W. Shi, and J. Liu. 2014. Vibration control using ATMD and site measurements on the Shanghai World financial center tower. The Structural Design of Tall and Special Buildings 23. doi: 10.1002/tal.1027.
  • Xu, H. B., C. W. Zhang, H. Li, and J. P. Ou. 2014a. Real-time hybrid simulation approach for performance validation of structural active control systems: A linear motor actuator based active mass driver case study. Structural Control and Health Monitoring 21 (4): 77–92. doi: 10.1002/stc.1585.
  • Xu, H. B., C. W. Zhang, H. Li, P. Tan, J.-P. Ou, and F.-L. Zhou. 2014b. Active mass driver control system for suppressing wind-induced vibration of the Canton tower. Smart Structures and System 13 (2): 281–303. doi: 10.12989/sss.2014.13.2.281.
  • Yamamoto, M., and T. Sone. 2014. Behavior of active mass damper (AMD) installed in high-rise building during 2011 earthquake off pacific coast of Tohoku and verification of regenerating system of AMD based on monitoring. Structural Control and Health Monitoring 21: 634–47.
  • Zhang, Q., X. Luo, J. Ding, B. Xie, and X. Gao. 2022. Dynamic response evaluation on TMD and main tower of Shanghai Tower subjected to Typhoon In-Fa. The Structural Design of Tall and Special Buildings 31 (9): e1929. doi: 10.1002/tal.1929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.