299
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Three-Dimensional Numerical Investigation on Seismic Response of Subway Station in Liquefied Soil by the Loosely Coupled Effective Stress Model

, , , &
Pages 3607-3631 | Received 03 Oct 2021, Accepted 22 Oct 2022, Published online: 07 Nov 2022

References

  • Ayala, A. G., and M. J. O’Rourke 1989. Effects of the 1985 Michoacan earthquake on water systems and other buried lifelines in Mexico. Technical Report No. NCEER-89-0009.
  • Byrne, P. M. 1991. A cyclic shear-volume coupling and pore pressure model for sand. In Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and soil Dynamics, St. Louis, Missouri, USA, 47–55.
  • Chen, G. X., S. Chen, C. Z. Qi, X. Du, Z. Wang, and W. Chen. 2015. Shaking table tests on a three-arch type subway station structure in a liquefiable soil. Bulletin of Earthquake Engineering 13 (6):1675–701. doi:10.1007/s10518-014-9675-0.
  • Chen, G. X., B. Ruan, K. Zhao, W. Chen, H. Zhuang, X. Du, S. Khoshnevisan, and C. H. Juang. 2020. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motion. Journal of Earthquake Engineering 24 (3):351–80. doi:10.1080/13632469.2018.1453416.
  • Chen, G. X., Y. Z. Wang, D. F. Zhao, K. Zhao, and J. Yang. 2021. A new effective stress method for nonlinear site response analyses. Earthquake Engineering & Structural Dynamics 50 (6):1595–611. doi:10.1002/eqe.3414.
  • Chen, G. X., Z. H. Wang, X. Zuo, X. Du, and H. Gao. 2013. Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground. Earthquake Engineering & Structural Dynamics 42 (10):1489–507. doi:10.1002/eqe.2283.
  • Chen, G. X., Z. H. Wang, X. Zuo, X.-L. Du, X.-J. Han. 2010. Development of laminar shear soil container for shaking table tests. Chinese Journal of Geotechnical Engineering 32(01): 89–97.
  • Chen, G. X., D. F. Zhao, W. Y. Chen, and C. H. Juang. 2019. Excess pore water pressure generation in cyclic undrained testing. Journal of Geotechnical and Geoenvironmental Engineering 145 (7):04019022. doi:10.1061/(ASCE)GT.1943-5606.0002057.
  • Chen, G. X., S. D. Zhu, X. J. Li, X. Li, and C. H. Juang 2022. 3D seismic response characteristics of a pile-mat-founded AP1000 nuclear-island building considering nonlinear hysteretic behavior of soil. Bulletin of Earthquake Engineering 20(13): 7077–106. doi:10.1007/s10518-022-01483-z
  • Hiroomi, I., H. Toshio, Y. Nozomu, and M. IWAFUJI. 1996. Damage to Daikai subway station during the 1995hyogoken-nambu earthquake and its investigation. Soils and Foundations 36 (s):283–300. doi:10.3208/sandf.36.Special_283.
  • Huo, H., A. Bobet, G. Fernández, and J. Ramírez. 2005. Load transfer mechanisms between underground structure and surrounding ground: Evaluation of the failure of the Daikai station. Journal of Geotechnical and Geoenvironmental Engineering 131 (12):1522–33. doi:10.1061/(ASCE)1090-0241(2005)131:12(1522).
  • Jeeho, L., and L. Gregory. 1998. Fenves. Plastic–damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124 (8): 892–900.
  • Kawashima, K. 1999. Seismic design of underground structures in soft ground: A review. In Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions, Tokyo, Japan.
  • Kishi, N., K. Sonoda, M. Komuro, and T. Kawarai. 2021. Numerical simulation of the Daikai station subway structure collapse due to sudden uplift during earthquake. Journal of Engineering Mechanics 147 (3):04020152. doi:10.1061/(ASCE)EM.1943-7889.0001895.
  • Ling, H. I., Y. Mohri, T. Kawabata, H. Liu, C. Burke, and L. Sun. 2003. Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering 129 (12):1092–101. doi:10.1061/(ASCE)1090-0241(2003)129:12(1092).
  • Liu, W., C. H. Juang, Q. Chen, and G. Chen. 2021. Dynamic site response analysis in the face of uncertainty–an approach based on response surface method. International Journal for Numerical and Analytical Methods in Geomechanics 45 (12):1854–67. doi:10.1002/nag.3245.
  • Liu, H. B., and E. X. Song. 2005. Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations. Computers and Geotechnics 32 (4):223–44. doi:10.1016/j.compgeo.2005.02.002.
  • Lu, C. C., and J. H. Hwang. 2019. Nonlinear collapse simulation of Daikai subway in the 1995 Kobe earthquake: necessity of dynamic analysis for a shallow tunnel. Tunnelling and Underground Space Technology 87:78–90. doi:10.1016/j.tust.2019.02.007.
  • Martin, G. R., W. D. L. Finn, and H. B. Seed. 1975. Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division 101 (GT5):423–38. doi:10.1061/AJGEB6.0000164.
  • Martin, P. P., and H. B. Seed. 1982. One-dimensional dynamic ground response analyses. Journal of Geotechnical Engineering 108 (7):935–52. doi:10.1061/AJGEB6.0001316.
  • Moss, R. E. S., and V. Crosariol. 2013. Shake table testing to quantify seismic soil-structure interaction of underground structures. Earthquake Spectra 29 (4):1413–40. doi:10.1193/070611EQS162M.
  • Otsubo, M., I. Towhata, T. Hayashida, M. Shimura, T. Uchimura, B. Liu, D. Taeseri, B. Cauvin, and H. Rattez. 2016. Shaking table tests on mitigation of liquefaction vulnerability for existing embedded lifelines. Soils & Foundations 56 (3):348–64. doi:10.1016/j.sandf.2016.04.003.
  • Prasad, S. K., I. Towhata, G. P. Chandradhara, Nanjundaswamy P. 2004. Shaking table tests in earthquake geotechnical engineering. Current Science 87(10): 1398–404.
  • Wang, Y., Q. Chen, Z. Zhao, and Z. He. 2021. A resilient column with angular friction damper for seismic performance upgrading of underground structures. Tunnelling and Underground Space Technology 116:104085. doi:10.1016/j.tust.2021.104085.
  • Wang, Y., Q. Chen, Z. Zhao, H. Qiang, B. Liu, and X. Wang. 2022. Multi-location seismic isolation approach and design for underground structures employing the negative-stiffness amplification system. Tunnelling and Underground Space Technology 122:104395. doi:10.1016/j.tust.2022.104395.
  • Wang, J. M., and J. J. Litehiser. 1985. The distribution of earthquake damage to underground facilities during the 1976 Tang-Shan Earthquake. Earthquake Spectra 1 (4):741–57. doi:10.1193/1.1585291.
  • Wu, W. F., S. P. Ge, Y. Yuan, W. Ding, and I. Anastasopoulos. 2021. Seismic response of a cross interchange metro station in soft soil: Physical and numerical modeling. Earthquake Engineering & Structural Dynamics 50 (9):2294–313. doi:10.1002/eqe.3446.
  • Zhao, D. F., B. Ruan, G. X. Chen. 2017. Validation of the modified irregular loading-reloading rules based on Davidenkov skeleton curve and its equivalent strain algorithm implemented in ABAQUS. Chinese Journal of Geotechnical Engineering 39(5):888–95.
  • Zhuang, H. Y., G. X. Chen, Z. H. Hu, and C. Qi. 2016. Influence of soil liquefaction on the seismic response of a subway station by the model tests. Bulletin of Engineering Geology and the Environment 75 (3):1169–82. doi:10.1007/s10064-015-0777-y.
  • Zhuang, H. Y., Z. H. Hu, G. X. Chen, and G. Chen. 2015. Seismic responses of a large underground structure in liquefied soils by fem numerical modelling. Bulletin of Earthquake Engineering 13 (12):3645–68. doi:10.1007/s10518-015-9790-6.
  • Zhuang, H. Y., X. Wang, Y. Miao, Y. Erlei, C. Su, R. Bin, and C. Guoxing. 2019. Seismic responses of a subway station and tunnel in a slightly inclined liquefiable ground through shaking table test. Soil Dynamics & Earthquake Engineering 116:371–85. doi:10.1016/j.soildyn.2018.09.051.
  • Zhu, T., J. Hu, Z. T. Zhang, J.-M. Zhang, and R. Wang. 2021. Centrifuge shaking table tests on precast underground structure–superstructure system in liquefiable ground. Journal of Geotechnical and Geoenvironmental Engineering 147 (8):106756. doi:10.1061/(ASCE)GT.1943-5606.0002549.
  • Zhu, T., R. Wang, and J. M. Zhang. 2021. Evaluation of various seismic response analysis methods for underground structures in liquefiable ground. Tunnelling and Underground Space Technology 110:103803. doi:10.1016/j.tust.2020.103803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.