129
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ground Motion Models for Non-Spectral Intensity Measures Based on the Iranian Database

&
Pages 3786-3806 | Received 11 Mar 2022, Accepted 16 Nov 2022, Published online: 29 Nov 2022

References

  • Abrahamson, N. A., and W. J. Silva. 1996. Empirical ground motion models. Report to Brookhaven National Laboratory.
  • Abrahamson, N. A., W. J. Silva, and R. Kamai. 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra 30 (3):1025–55. doi:10.1193/070913EQS198M.
  • Abrahamson, N. A., and R. R. Youngs. 1992. A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America 82 (1):505–10. doi:10.1785/BSSA0820010505.
  • Afshari, K., and J. P. Stewart. 2016. Physically parameterized prediction equations for significant duration in active crustal regions. Earthquake Spectra 32 (4):2057–81. doi:10.1193/063015EQS106M.
  • Akkar, S., M. A. Sandıkkaya, M. Şenyurt, A. A. Sisi, B. Ö. Ay, P. Traversa, J. Douglas, F. Cotton, L. Luzi, B. Hernandez, et al. 2014. Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake Engineering 12 (1):311–39. doi:10.1007/s10518-013-9506-8.
  • Al-Atik, L., N. Abrahamson, J. J. Bommer, F. Scherbaum, F. Cotton, and N. Kuehn. 2010. The variability of ground-motion prediction models and its components. Seismological Research Letters 81 (5):794–801. doi:10.1785/gssrl.81.5.794.
  • Anbazhagan, P., M. N. Sheikh, K. Bajaj, P. M. Dayana, H. Madhura, and G. R. Reddy. 2017. Empirical models for the prediction of ground motion duration for intraplate earthquakes. Journal of Seismology 21 (4):1001–21. doi:10.1007/s10950-017-9648-2.
  • Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S. J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, et al. 2014. NGA-West2 database. Earthquake Spectra 30 (3):989–1005. doi:10.1193/070913EQS197M.
  • Arias, A. 1970. Measure of Earthquake Intensity. Santiago de Chile: Massachusetts Institute of Technology, Cambridge University of Chile.
  • Barani, S., D. Albarello, M. Massa, and D. Spallarossa. 2017. Influence of twenty years of research on ground-motion prediction equations on probabilistic seismic hazard in Italy. Bulletin of the Seismological Society of America 107 (1):240–55. doi:10.1785/0120150276.
  • Bommer, J. J., J. Hancock, and J. E. Alarcón. 2006. Correlations between duration and number of effective cycles of earthquake ground motion. Soil Dynamics and Earthquake Engineering 26 (1):1–13. doi:10.1016/j.soildyn.2005.10.004.
  • Bommer, J. J., and A. Martinez-Pereira. 1999. The effective duration of earthquake strong motion. Journal of Earthquake Engineering 3 (2):127–72. doi:10.1080/13632469909350343.
  • Bommer, J. J., P. J. Stafford, and J. E. Alarcón. 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bulletin of the Seismological Society of America 99 (6):3217–33. doi:10.1785/0120080298.
  • Boore, D. M. 2010. Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bulletin of the Seismological Society of America 100 (4):1830–35. doi:10.1785/0120090400.
  • Boore, D. M., and T. Kishida. 2017. Relations between some horizontal‐component ground-motion intensity measures used in practice. Bulletin of the Seismological Society of America 107 (1):334–43. doi:10.1785/0120160250.
  • Boore, D. M., and E. M. Thompson. 2015. Revisions to some parameters used in stochastic‐method simulations of ground motion. Bulletin of the Seismological Society of America 105 (2A):1029–41. doi:10.1785/0120140281.
  • Bora, S. S., F. Scherbaum, N. Kuehn, and P. Stafford. 2014. Fourier spectral-and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bulletin of Earthquake Engineering 12 (1):467–93. doi:10.1007/s10518-013-9482-z.
  • Bozorgnia, Y., and K. W. Campbell. 2016a. Vertical ground motion model for PGA, PGV, and linear response spectra using the NGA-West2 database. Earthquake Spectra 32 (2):979–1004. doi:10.1193/072814eqs121m.
  • Bozorgnia, Y., and K. W. Campbell. 2016b. Ground motion model for the vertical-to-horizontal (V/H) ratios of PGA, PGV, and response spectra. Earthquake Spectra 32 (2):951–78. doi:10.1193/100614eqs151m.
  • Bradley, B. A. 2011. Correlation of significant duration with amplitude and cumulative intensity measures and its use in ground motion selection. Journal of Earthquake Engineering 15 (6):809–32. doi:10.1080/13632469.2011.557140.
  • Bradley, B. A., M. Cubrinovski, R. P. Dhakal, and G. A. MacRae. 2009. Intensity measures for the seismic response of pile foundations. Soil Dynamics and Earthquake Engineering 29 (6):1046–58. doi:10.1016/j.soildyn.2008.12.002.
  • Bullock, Z., S. Dashti, A. Liel, K. Porter, Z. Karimi, and B. Bradley. 2017. Ground‐motion prediction equations for Arias intensity, cumulative absolute velocity, and peak incremental ground velocity for rock sites in different tectonic environments. Bulletin of the Seismological Society of America 107 (5):2293–309. doi:10.1785/0120160388.
  • Cabanas, L., B. Benito, and M. Herráiz. 1997. An approach to the measurement of the potential structural damage of earthquake ground motions. Earthquake Engineering & Structural Dynamics 26 (1):79–92. doi:10.1002/(SICI)1096-9845(199701)26:1<79:AID-EQE624>3.0.CO;2-Y.
  • Campbell, K. W., and Y. Bozorgnia. 2012. A comparison of ground motion prediction equations for Arias intensity and cumulative absolute velocity developed using a consistent database and functional form. Earthquake Spectra 28 (3):931–41. doi:10.1193/1.4000067.
  • Campbell, K. W., and Y. Bozorgnia. 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra 30 (3):1087–115. doi:10.1193/062913EQS175M.
  • Campbell, K. W., and Y. Bozorgnia. 2019. Ground motion models for the horizontal components of Arias intensity (AI) and cumulative absolute velocity (CAV) using the NGA-West2 database. Earthquake Spectra 35 (3):1289–310. doi:10.1193/090818EQS212M.
  • Chandramohan, R., J. W. Baker, and G. G. Deierlein. 2016. Impact of hazard‐consistent ground motion duration in structural collapse risk assessment. Earthquake Engineering & Structural Dynamics 45 (8):1357–79. doi:10.1002/eqe.2711.
  • Chao, S. H., and Y. H. Chen. 2019. A novel regression analysis method for randomly truncated strong-motion data. Earthquake Spectra 35 (2):977–1001. doi:10.1193/022218EQS044M.
  • Chiou, B. S. J. 2013. Update of the Chiou and Youngs NGA ground motion model for average horizontal component of peak ground motion and response spectra, PEER report 2013/07, pacific earthquake engineering research center. Berkeley, CA: University of California.
  • Chiou, B., R. Darragh, N. Gregor, and W. Silva. 2008. NGA project strong-motion database. Earthquake Spectra 24 (1):23–44. doi:10.1193/1.2894831.
  • Chiou, B. S. J., and R. R. Youngs. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 30 (3):1117–53. doi:10.1193/072813EQS219M.
  • Danciu, L., and G. A. Tselentis. 2007. Engineering ground-motion parameters attenuation relationships for Greece. Bulletin of the Seismological Society of America 97 (1B):162–83. doi:10.1785/0120050087.
  • Douglas, J. 2012. Consistency of ground-motion predictions from the past four decades: Peak ground velocity and displacement, Arias intensity and relative significant duration. Bulletin of Earthquake Engineering 10 (5):1339–56. doi:10.1007/s10518-012-9359-6.
  • Du, W., and G. Wang. 2017. Prediction equations for ground‐motion significant durations using the NGA‐West2 database. Bulletin of the Seismological Society of America 107 (1):319–33. doi:10.1785/0120150352.
  • EPRI; Electrical Power Research Institute. 1988. Criterion for determining exceedance of the operating basis earthquake. Rapport NP-5930 2848-16.
  • EPRI; Electrical Power Research Institute. 1991. Standardization of the cumulative absolute velocity. EPRI TR-100082-T2. Palo Alto, CA.
  • Foulser‐piggott, R., and K. Goda. 2015. Ground‐motion prediction models for Arias intensity and cumulative absolute velocity for Japanese earthquakes considering single‐station sigma and within‐event spatial correlation. Bulletin of the Seismological Society of America 105 (4):1903–18. doi:10.1785/0120140316.
  • Foulser‐piggott, R., and P. J. Stafford. 2012. A predictive model for Arias intensity at multiple sites and consideration of spatial correlations. Earthquake Engineering & Structural Dynamics 41 (3):431–51. doi:10.1002/eqe.1137.
  • Fukushima, Y., K. Irikura, T. Uetake, and H. Matsumoto. 2000. Characteristics of observed peak amplitude for strong ground motion from the 1995 Hyogoken Nanbu (Kobe) earthquake. Bulletin of the Seismological Society of America 90 (3):545–65. doi:10.1785/0119990066.
  • Ghasemi, H., M. Zare, Y. Fukushima, and F. Sinaeian. 2009. Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN). Soil Dynamics and Earthquake Engineering 29 (1):121–32. doi:10.1016/j.soildyn.2008.01.007.
  • Goulet, C. A., T. Kishida, T. Ancheta, C. H. Cramer, R. B. Darragh, W. J. Silva, Y. M. A. Hashash, J. Harmon, J. P. Stewart, K. E. Woodell, et al. 2014. PEER NGA-East database, Pacific Earthquake Engineering Research Center Report 2014/17.
  • Guo, G., D. Yang, and Y. Liu. 2018. Duration effect of near-fault pulse-like ground motions and identification of most suitable duration measure. Bulletin of Earthquake Engineering 16 (11):5095–119. doi:10.1007/s10518-018-0386-9.
  • Harp, E. L., and R. C. Wilson. 1995. Shaking intensity thresholds for rock falls and slides: Evidence from 1987 Whittier Narrows and Superstition Hills earthquake strong-motion records. Bulletin of the Seismological Society of America 85 (6):1739–57.
  • Hou, H., and B. Qu. 2015. Duration effect of spectrally matched ground motions on seismic demands of elastic perfectly plastic SDOFS. Engineering Structures 90:48–60. doi:10.1016/j.engstruct.2015.02.013.
  • Iervolino, I., G. Manfredi, and E. Cosenza. 2006. Ground motion duration effects on nonlinear seismic response. Earthquake Engineering & Structural Dynamics 35 (1):21–38. doi:10.1002/eqe.529.
  • Jaimes, M. A., and A. D. García‐soto. 2021. Ground‐Motion duration prediction model from recorded Mexican interplate and intermediate‐depth intraslab earthquakes. Bulletin of the Seismological Society of America 111 (1):258–73. doi:10.1785/0120200196.
  • Jibson, R. W. 2007. Regression models for estimating coseismic landslide displacement. Engineering geology 91 (2–4):209–18. doi:10.1016/j.enggeo.2007.01.013.
  • Jibson, R. W., and D. K. Keefer. 1993. Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone. Geological Society of America Bulletin 105 (4):521–36. doi:10.1130/0016-7606(1993)105<0521:AOTSOO>2.3.CO;2.
  • Jibson, R. W., and H. Tanyaş. 2020. The influence of frequency and duration of seismic ground motion on the size of triggered landslides—a regional view. Engineering Geology 273:105671. doi:10.1016/j.enggeo.2020.105671.
  • Kaklamanos, J., L. G. Baise, and D. M. Boore. 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra 27 (4):1219–35. doi:10.1193/1.3650372.
  • Karimi, Z., and S. Dashti. 2017a. Ground motion intensity measures to evaluate I: The liquefaction hazard in the vicinity of shallow-founded structures. Earthquake Spectra 33 (1):241–76. doi:10.1193/103015eqs163m.
  • Karimi, Z., and S. Dashti. 2017b. Ground motion intensity measures to evaluate II: The performance of shallow-founded structures on liquefiable ground. Earthquake Spectra 33 (1):277–98. doi:10.1193/103015eqs163m.
  • Kayen, R. E., and J. K. Mitchell. 1997. Assessment of liquefaction potential during earthquakes by Arias intensity. Journal of Geotechnical and Geoenvironmental Engineering 123 (12):1162–74. doi:10.1061/(ASCE)1090-0241(1997)123:12(1162).
  • Kempton, J. J., and J. P. Stewart. 2006. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthquake Spectra 22 (4):985–1013. doi:10.1193/1.2358175.
  • Kramer, S. L., and R. A. Mitchell. 2006. Ground motion intensity measures for liquefaction hazard evaluation. Earthquake Spectra 22 (2):413–38. doi:10.1193/1.2194970.
  • Kuehn, N. M., T. Kishida, M. AlHamaydeh, G. Lavrentiadis, and Y. Bozorgnia. 2020. A Bayesian model for truncated regression for the estimation of empirical ground-motion models. Bulletin of Earthquake Engineering 18 (14):6149–79. doi:10.1007/s10518-020-00943-8.
  • Lee, J., and R. A. Green. 2014. An empirical significant duration relationship for stable continental regions. Bulletin of Earthquake Engineering 12 (1):217–35. doi:10.1007/s10518-013-9570-0.
  • Mackie, K., and B. Stojadinović. 2001. Probabilistic seismic demand model for California highway bridges. Journal of Bridge Engineering 6 (6):468–81. doi:10.1061/(ASCE)1084-0702(2001)6:6(468).
  • Meimandi‐parizi, A., M. Daryoushi, A. Mahdavian, and H. Saffari. 2020. Ground‐motion models for the prediction of significant duration using strong‐motion data from Iran. Bulletin of the Seismological Society of America 110 (1):319–30. doi:10.1785/0120190109.
  • Mirzaei, N., G. Mengtan, and C. Yuntai. 1998. Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. Journal of Earthquake Prediction Research 7:465–95.
  • Rezaee-Manesh, M., and H. Saffari. 2020. Empirical equations for the prediction of the bracketed and uniform duration of earthquake ground motion using the Iran database. Soil Dynamics and Earthquake Engineering 137:106306. doi:10.1016/j.soildyn.2020.106306.
  • Ruiz-Garcia, J. 2010. On the influence of strong-ground motion duration on residual displacement demands. Earthquake and Structures 1 (4):327–44. doi:10.12989/eas.2010.1.4.327.
  • Sandıkkaya, M. A., and S. Akkar. 2017. Cumulative absolute velocity, Arias intensity and significant duration predictive models from a pan-European strong-motion dataset. Bulletin of Earthquake Engineering 15 (5):1881–98. doi:10.1007/s10518-016-0066-6.
  • Shahvar, M. P., E. Farzanegan, A. Eshaghi, and H. Mirzaei. 2021. i1‐net: The Iran strong motion network. Seismological Research Letters 92 (4):2100–08. doi:10.1785/0220200417.
  • Stafford, P. J., J. B. Berrill, and J. R. Pettinga. 2009. New predictive equations for Arias intensity from crustal earthquakes in New Zealand. Journal of Seismology 13 (1):31–52. doi:10.1007/s10950-008-9114-2.
  • Travasarou, T., J. D. Bray, and N. A. Abrahamson. 2003. Empirical attenuation relationship for Arias intensity. Earthquake Engineering & Structural Dynamics 32 (7):1133–55. doi:10.1002/eqe.270.
  • Tremblay, R. 1998. Development of design spectra for long-duration ground motions from Cascadia subduction earthquakes. Canadian Journal of Civil Engineering 25 (6):1078–90. doi:10.1139/l98-028.
  • Yaghmaei-Sabegh, S., Z. Shoghian, and M. N. Sheikh. 2014. A new model for the prediction of earthquake ground-motion duration in Iran. Natural Hazards 70 (1):69–92. doi:10.1007/s11069-011-9990-6.
  • Yiğit, A. 2020. Prediction of amount of earthquake-induced slope displacement by using Newmark method. Engineering Geology 264:105385. doi:10.1016/j.enggeo.2019.105385.
  • Zafarani, H., L. Luzi, G. Lanzano, and M. R. Soghrat. 2018. Empirical equations for the prediction of PGA and pseudo spectral accelerations using Iranian strong-motion data. Journal of Seismology 22 (1):263–85. doi:10.1007/s10950-017-9704-y.
  • Zafarani, H., and M. R. Soghrat. 2017. A selected dataset of the Iranian strong motion records. Natural hazards 86 (3):1307–32. doi:10.1007/s11069-017-2745-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.