235
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Test of Novel Self-Centering Energy Dissipative Braces with Pre-Pressed Disc Springs and U-Shaped Steel Plates

, , , , &
Pages 3853-3876 | Received 18 May 2022, Accepted 21 Nov 2022, Published online: 29 Nov 2022

References

  • Abaqus, C. 2017. Analysis user’s manual. Providence, RI: ABAQUS. Inc.
  • Aguaguiña, M., Y. Zhou, and Y. Zhou. 2019. Loading protocols for qualification testing of BRBs considering global performance requirements. Engineering Structures 189:440–57. doi:10.1016/j.engstruct.2019.03.094.
  • Bai, J., H. Chen, J. Zhao, M. Liu, and S. Jin. 2021. Seismic design and subassemblage tests of buckling-restrained braced RC frames with shear connector gusset connections. Engineering Structures 234:112018. doi:10.1016/j.engstruct.2021.112018.
  • Chinese Standard. 2005. Disc springs. GB/T 1972-2005. Beijing: Chinese Standard.
  • Christopoulos, C., R. Tremblay, H. J. Kim, and M. Lacerte. 2008. Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation. Journal of Structural Engineering 134 (1):96–107. doi:10.1061/(ASCE)0733-9445(2008)134:1(96).
  • Deng, K. L., P. Pan, Y. K. Su, and Y. Xue. 2015. Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading. Engineering Structures 93:27–35. doi:10.1016/j.engstruct.2015.03.006.
  • Deng, K., P. Pan, and C. Wang. 2013. Development of crawler steel damper for bridges. Journal of Constructional Steel Research 85:140–50. doi:10.1016/j.jcsr.2013.03.009.
  • Dong, H., X. Du, Q. Han, K. Bi, and H. Hao. 2019. Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces. Bulletin of Earthquake Engineering 17 (6):3255–81. doi:10.1007/s10518-019-00586-4.
  • Erochko, J., C. Christopoulos, and R. Tremblay. 2015. Design, testing, and detailed component modeling of a high-capacity self-centering energy-dissipative brace. Journal of Structural Engineering 141 (8):1–12. doi:10.1061/(ASCE)ST.1943-541X.0001166.
  • Fang, C., Y. Ping, and Y. Chen. 2020. Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames. Earthquake Engineering & Structural Dynamics 49 (2):155–74. doi:10.1002/eqe.3231.
  • Fang, C., Y. Ping, Y. Chen, M. C. H. Yam, J. Chen, and W. Wang. 2020. Seismic performance of self-centering steel frames with SMA-viscoelastic hybrid braces. Journal of Earthquake Engineering 26 (10):1–28. doi:10.1080/13632469.2020.1856233.
  • Fang, C., W. Wang, C. Qiu, S. Hu, G. A. MacRae, and M. R. Eatherton. 2022. Seismic resilient steel structures: A review of research, practice, challenges and opportunities. Journal of Constructional Steel Research 191:107172. doi:10.1016/j.jcsr.2022.107172.
  • Fang, C., W. Wang, and D. Shen. 2021. Development and experimental study of disc spring–based self-centering devices for seismic resilience. Journal of Structural Engineering 147 (7):04021094. doi:10.1061/(ASCE)ST.1943-541X.0003058.
  • Fang, C., M. C. Yam, T. M. Chan, W. Wang, X. Yang, and X. Lin. 2018. A study of hybrid self-centring connections equipped with shape memory alloy washers and bolts. Engineering Structures 164:155–68. doi:10.1016/j.engstruct.2018.03.006.
  • Fell, B. V., A. M. Kanvinde, G. G. Deierlein, and A. T. Myers. 2009. Experimental investigation of inelastic cyclic buckling and fracture of steel braces. Journal of Structural Engineering 135 (1):19–32. doi:10.1061/(ASCE)0733-9445(2009)135:1(19).
  • GB T1972-2005. 2005. Disc spring. Beijing: China Architecture Industry Press.
  • GB/T 228.1-2010. 2010. Metallic materials-tensile testing-Part 1: Method of test at room temperature. Beijing: Standards Press of China.
  • Ghowsi, A. F., and D. R. Sahoo. 2022. Cyclic behavior of all-steel BRBs with bolted angle restrainers: Testing and numerical analysis. Journal of Earthquake Engineering 1–27. doi:10.1080/13632469.2021.2002217.
  • Huang, H., F. Zhang, W. Zhang, M. Guo, S. Urushadze, and G. Wu. 2019. Numerical analysis of self-centering energy dissipation brace with arc steel plate for seismic resistance. Soil Dynamics and Earthquake Engineering 125:105751. doi:10.1016/j.soildyn.2019.105751.
  • Jaisee, S., F. Yue, and Y. H. Ooi. 2021. A state-of-the-art review on passive friction dampers and their applications. Engineering Structures 235:112022. doi:10.1016/j.engstruct.2021.112022.
  • Jiao, Y., S. Kishiki, S. Yamada, D. Ene, Y. Konishi, Y. Hoashi, and M. Terashima. 2015. Low cyclic fatigue and hysteretic behavior of U‐shaped steel dampers for seismically isolated buildings under dynamic cyclic loadings. Earthquake Engineering & Structural Dynamics 44 (10):1523–38. doi:10.1002/eqe.2533.
  • Kumar, S., and M. Kumar. 2021. Damping implementation issues for in-structure response estimation of seismically isolated nuclear structures. Earthquake Engineering & Structural Dynamics 50 (7):1967–88. doi:10.1002/eqe.3436.
  • Qiu, C., L. Cheng, and X. Du. 2022. Performance-based plastic design of multi-story hybrid braced frames with buckling-restrained braces and shape memory alloy braces. Journal of Constructional Steel Research 198:107576. doi:10.1016/j.jcsr.2022.107576.
  • Qiu, C., J. Liu, and X. Du. 2022. Cyclic behavior of SMA slip friction damper. Engineering Structures 250:113407. doi:10.1016/j.engstruct.2021.113407.
  • Qiu, C., H. Wang, J. Liu, J. Qi, and Y. Wang. 2020. Experimental tests and finite element simulations of a new SMA-steel damper. Smart Materials and Structures 29 (3):035016. doi:10.1088/1361-665X/ab6abd.
  • Qiu, C., Y. Zhang, H. Li, B. Qu, H. Hou, and L. Tian. 2018. Seismic performance of concentrically braced frames with non-buckling braces: A comparative study. Engineering Structures 154:93–102. doi:10.1016/j.engstruct.2017.10.075.
  • Qiu, C., and S. Zhu. 2017. Shake table test and numerical study of self‐centering steel frame with SMA braces. Earthquake Engineering & Structural Dynamics 46 (1):117–37. doi:10.1002/eqe.2777.
  • Qu, B., C. X. Dai, J. Qiu, H. Hou, and C. Qiu. 2019. Testing of seismic dampers with replaceable U-shaped steel plates. Engineering Structures 179:625–39. doi:10.1016/j.engstruct.2018.11.016.
  • Ramirez, C. M., and E. Miranda. 2012. Significance of residual drifts in building earthquake loss estimation. Earthquake Engineering & Structural Dynamics 41 (11):1477–93. doi:10.1002/eqe.2217.
  • Rossi, P. P. 2015. Importance of isotropic hardening in the modeling of buckling restrained braces. Journal of Structural Engineering 141 (4):04014124. doi:10.1061/(ASCE)ST.1943-541X.0001031.
  • Sabelli, R., S. Mahin, and C. Chang. 2003. Seismic demands on steel braced frame buildings with buckling-restrained braces. Engineering Structures 25 (5):655–66. doi:10.1016/S0141-0296(02)00175-X.
  • Taiyari, F., F. M. Mazzolani, and S. Bagheri. 2019. A proposal for energy dissipative braces with U-shaped steel strips. Journal of Constructional Steel Research 154:110–22. doi:10.1016/j.jcsr.2018.11.031.
  • Tremblay, R., M. Lacerte, and C. Christopoulos. 2008. Seismic response of multistory buildings with self-centering energy dissipative steel braces. Journal of Structural Engineering 134 (1):108–20. doi:10.1061/(ASCE)0733-9445(2008)134:1(108).
  • Wang, W., C. Fang, and J. Liu. 2017. Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles. Journal of Structural Engineering 143 (2):04016175. doi:10.1061/(ASCE)ST.1943-541X.0001675.
  • Wang, H., X. Nie, and P. Pan. 2017. Development of a self-centering buckling restrained brace using cross-anchored pre-stressed steel strands. Journal of Constructional Steel Research 138:621–32. doi:10.1016/j.jcsr.2017.07.017.
  • Wang, Y., Z. Zhou, L. Zhang, and K. Zhao. 2021. Hysteretic behavior of dual-self-centering variable friction damper braces with low pretensioned force. Journal of Earthquake Engineering 1–20. doi:10.1080/13632469.2021.1997840.
  • Xu, L., X. Fan, and Z. Li. 2016. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace. Engineering Structures 127:49–61. doi:10.1016/j.engstruct.2016.08.043.
  • Zhang, R., C. Qiu, L. Huang, and J. Jia. 2022. Approximate seismic performance of full and partial self-centering systems based on spectral analysis of SDOF systems. Structures 37:1080–97. doi:10.1016/j.istruc.2022.01.075.
  • Zhang, R., W. Wang, and M. S. Alam. 2022. Performance-based seismic design of full and partial self-centering steel braced frames using modified lateral force distribution. Journal of Constructional Steel Research 196:107438. doi:10.1016/j.jcsr.2022.107438.
  • Zhu, R., L. Song, T. Guo, and F. Mwangilwa. 2020. Seismic analysis and design of SDOF elastoplastic structures with self-centering viscous-hysteretic devices. Journal of Earthquake Engineering 26 (9):1–22. doi:10.1080/13632469.2020.1835752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.