410
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Value-Based Seismic Performance Optimization of Steel Frames Equipped with Viscous Dampers

, ORCID Icon, &
Pages 4024-4050 | Received 08 Feb 2022, Accepted 01 Dec 2022, Published online: 20 Dec 2022

References

  • Aguirre, J. J., J. L. Almazán, and C. J. Paul. 2013. Optimal control of linear and nonlinear asymmetric structures by means of passive energy dampers. Earthquake Engineering & Structural Dynamics 42 (3): 377–95. doi: 10.1002/eqe.2211.
  • AISC. 2017. American Institute of Steel Construction. 15th ed. Chicago, Illinois.
  • Apostolakis, G., and G. F. Dargush. 2010. Optimal seismic design of moment-resisting steel frames with hysteretic passive devices. Earthquake Engineering & Structural Dynamics 2009 (August): 355–76. doi: 10.1002/eqe.
  • Artar, M., and S. Carbas. 2022. Optimum sizing design of steel frame structures through maximum energy dissipation of friction dampers under seismic excitations. Structures 44: 1928–44. doi: 10.1016/j.istruc.2022.08.119.
  • ASCE7-16 minimum design loads and associated criteria for buildings and other structures. 2016. ASCE 7-16.
  • Brando, G., F. D’Agostino, and G. De Matteis. 2015. Seismic performance of MR frames protected by viscous or hysteretic dampers. The Structural Design of Tall and Special Buildings 24 (9): 653–71. doi: 10.1002/tal.1204.
  • Brando, G., D. Rapone, E. Spacone, and M. Giovanna Masciotta. 2022. Mudis: A low computational effort multi-unit discretization procedure for modelling masonry walls with periodic arrangement. Structures 43: 1380–406. doi: 10.1016/j.istruc.2022.07.038.
  • Chiniforush, A. A., H. Estekanchi, and K. M. Dolatshahi. 2017. Application of endurance time analysis in seismic evaluation of an unreinforced masonry monument. Journal of Earthquake Engineering 21 (2): 181–202. doi: 10.1080/13632469.2016.1160008.
  • Christopher, R., and L. S. Roland. 1985. ATC-13: Earthquake damage evaluation data for California. Applied Technology Council, Redwood City, CA.
  • CityFeet. 2020. Commercial Real Estate for Sale, Lease & Coworking Space. Accessed March 14, 2020. www.cityfeet.com
  • Clough, R. W., and J. Penzien. 1975. Dynamics of Structures. McGraw-Hill.
  • Constantinou, M. C., and S. MD. 1992. Experimental and analytical investigation of seismic response of structures with supplemental fluid viscous dampers. US: National Center for Earthquake Engineering Research.
  • De Domenico, D., and I. Hajirasouliha. 2021. Multi-level performance-based design optimisation of steel frames with nonlinear viscous dampers. Bulletin of Earthquake Engineering 19 (12): 1–35. doi: 10.1007/s10518-021-01152-7.
  • De Domenico, D., and G. Ricciardi. 2019. Earthquake protection of structures with nonlinear viscous dampers optimized through an energy-based stochastic approach. Engineering Structures 179: 523–39. doi: 10.1016/j.engstruct.2018.09.076.
  • De Domenico, D., G. Ricciardi, and I. Takewaki. 2019. Design strategies of viscous dampers for seismic protection of building structures: A review. Soil Dynamics and Earthquake Engineering 118: 144–65. doi: 10.1016/j.soildyn.2018.12.024.
  • Del Gobbo, G. M., A. Blakeborough, and M. S. Williams. 2018. Improving total-building seismic performance using linear fluid viscous dampers. Bulletin of Earthquake Engineering 16 (9): 4249–72. doi: 10.1007/s10518-018-0338-4.
  • di Lallo, Y., D. Rapone, M. G. Masciotta, and G. Brando. 2022. Numerical analysis of masonry structures through a Modified Composite Interface (MCI) model. Key Engineering Materials 916: 256–64. doi: 10.4028/p-to1l34.
  • Dolce, M., D. Cardone, F. C. Ponzo, and C. Valente. 2005. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthquake Engineering & Structural Dynamics 34 (14): 1687–717. doi: 10.1002/eqe.501.
  • Dong, B., R. Sause, and J. M. Ricles. 2016. Seismic response and performance of a steel MRF building with nonlinear viscous dampers under DBE and MCE. Journal of Structural Engineering 142 (6): 4016023. doi: 10.1061/(ASCE)ST.1943-541X.0001482.
  • Estekanchi, H. E., M. Mashayekhi, H. Vafai, G. Ahmadi, S. A. Mirfarhadi, and M. Harati. 2020. A state-of-knowledge review on the endurance time method. Structures 27: 2288–99. doi: 10.1016/j.istruc.2020.07.062.
  • Estekanchi, H. E., H. T. Riahi, and A. Vafai. 2011. Application of endurance time method in seismic assessment of steel frames. Engineering Structures 33 (9): 2535–46. doi: 10.1016/j.engstruct.2011.04.025.
  • Estekanchi, H. E., V. Valamanesh, and A. Vafai. 2007. Application of endurance time method in linear seismic analysis. Engineering Structures 29 (10): 2551–62. doi: 10.1016/j.engstruct.2007.01.009.
  • ETABS, Berkeley, CA, U. S. A. 2020. Computer and Structures Inc.
  • FEMA P-58. 2018a. FEMA P-58-1: Seismic performance assessment of buildings. Volume 1 – methodology. FEMA P-58 FEMA P-58 1 (December 2018): 340. https://femap58.atcouncil.org/%0Ahttps://www.fema.gov/media-library/assets/documents/90380.
  • FEMA P-58. 2018b. FEMA P-58-3: Seismic Performance Assessment of Buildings. Volume 3 – Supporting Electronic Materials. FEMA P-58.
  • Fema P695. 2009. Quantification of building seismic performance factors. FEMA P695 (Issue June): 421.
  • Fiore, A., L. Berardi, and G. C. Marano. 2012. Predicting torsional strength of RC beams by using Evolutionary Polynomial Regression. Advances in Engineering Software 47 (1): 178–87. doi: 10.1016/j.advengsoft.2011.11.001.
  • Flores, F. X., F. A. Charney, and D. Lopez-Garcia. 2014. Influence of the gravity framing system on the collapse performance of special steel moment frames. Journal of Constructional Steel Research 101: 351–62. doi: https://doi.org/10.1016/j.jcsr.2014.05.020.
  • Foyouzat, M. A., and H. E. Estekanchi. 2016. Application of rigid-perfectly plastic spectra in improved seismic response assessment by Endurance Time method. Engineering Structures 111: 24–35. doi: 10.1016/j.engstruct.2015.11.025.
  • Garcia, D. L. 2001. A simple method for the design of optimal damper configurations in MDOF structures. Earthquake Spectra 17 (3): 387–98. doi: 10.1193/1.1586180.
  • Garc, A. B., J. Jos, and D. Coz. 2006. Design optimization of 3D steel structures : Genetic algorithms vs. classical techniques. Journal of Constructional Steel Research 62 (12): 1303–09. doi: 10.1016/j.jcsr.2006.02.005.
  • Gidaris, I., and A. A. Taflanidis. 2015. Performance assessment and optimization of fluid viscous dampers through life-cycle cost criteria and comparison to alternative design approaches. Bulletin of Earthquake Engineering 13 (4): 1003–28. doi: 10.1007/s10518-014-9646-5.
  • Gidaris, I., A. A. Taflanidis, and G. P. Mavroeidis. 2018. Multiobjective design of supplemental seismic protective devices utilizing lifecycle performance criteria. Journal of Structural Engineering 144 (3): 4017225. doi: 10.1061/(ASCE)ST.1943-541X.0001969.
  • Goulet, C. A., C. B. Haselton, J. Mitrani-reiser, J. L. Beck, G. G. Deierlein, K. A. Porter, and J. P. Stewart. 2007. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building—from seismic hazard to collapse safety and economic losses. Earthquake Engineering & Structural Dynamics 36 (13): 1973–97. doi: 10.1002/eqe.694.
  • Gupta, A. 1999. Seismic demands for performance evaluation of steel moment resisting frame structures. California, US: Stanford University.
  • Gutierrez-Lemini, D. 2014. Engineering viscoelasticity. New York: Springer.
  • Horton, T. A., I. Hajirasouliha, B. Davison, and Z. Ozdemir. 2021a. Accurate prediction of cyclic hysteresis behaviour of RBS connections using deep learning neural networks. Engineering Structures 247: 113156. doi: 10.1016/j.engstruct.2021.113156.
  • Horton, T. A., I. Hajirasouliha, B. Davison, and Z. Ozdemir. 2021b. More efficient design of reduced beam sections (RBS) for maximum seismic performance. Journal of Constructional Steel Research 183: 106728. doi: 10.1016/j.jcsr.2021.106728.
  • Horton, T. A., I. Hajirasouliha, B. Davison, Z. Ozdemir, and I. Abuzayed. 2021. Development of more accurate cyclic hysteretic models to represent RBS connections. Engineering Structures 245: 112899. doi: 10.1016/j.engstruct.2021.112899.
  • Hwang, S. H., J. S. Jeon, and K. Lee. 2019. Evaluation of economic losses and collapse safety of steel moment frame buildings designed for risk categories II and IV. Engineering Structures 201 (July): 109830. doi: 10.1016/j.engstruct.2019.109830.
  • Hwang, J.-S., W.-C. Lin, and N.-J. Wu. 2013. Comparison of distribution methods for viscous damping coefficients to buildings. Structure and Infrastructure Engineering 9 (1): 28–41.
  • Jarrett, J. A., J. P. Judd, and F. A. Charney. 2015. Comparative evaluation of innovative and traditional seismic-resisting systems using the FEMA P-58 procedure. Journal of Constructional Steel Research 105: 107–18. doi: https://doi.org/10.1016/j.jcsr.2014.10.001.
  • Kasai, K., Y. Fu, and A. Watanabe. 1998. Passive control systems for seismic damage mitigation. Journal of Structural Engineering 124 (5): 501–12. doi: 10.1061/(ASCE)0733-9445(1998)124:5(501).
  • Kolour, N. A., M. C. Basim, and M. Chenaghlou. 2021. Multi-objective optimum design of nonlinear viscous dampers in steel structures based on life cycle cost. Structures 34: 3776–88. doi: 10.1016/j.istruc.2021.09.100.
  • Lee, D., and D. P. Taylor. 2001. Viscous damper development and future trends. The Structural Design of Tall Buildings 10 (5): 311–20. doi: 10.1002/tal.188.
  • Levy, R., and O. Lavan. 2006. Fully stressed design of passive controllers in framed structures for seismic loadings. Structural and Multidisciplinary Optimization 32 (6): 485–98. doi: 10.1007/s00158-005-0558-5.
  • Lignos, D. G., A. R. Hartloper, A. Elkady, G. G. Deierlein, and R. Hamburger. 2019. Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering. Journal of Structural Engineering 145 (9):4019083.
  • Lignos, D. G., and H. Krawinkler. 2011. Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering 137 (11): 1291–302. doi: 10.1061/(ASCE)ST.1943-541X.0000376.
  • Lin, W., and A. K. Chopra. 2002. Earthquake response of elastic SDF systems with non-linear uid viscous dampers. Earthquake Engineering & Structural Dynamics 1642 (9): 1623–42. doi: 10.1002/eqe.179.
  • Liu, W., M. Tong, and G. C. Lee. 2005. Optimization methodology for damper configuration based on building performance indices. Journal of Structural Engineering 131 (11): 1746–56. doi: 10.1061/(ASCE)0733-9445(2005)131:11(1746).
  • Lopez Garcia, D., and T. T. Soong. 2002. Efficiency of a simple approach to damper allocation in MDOF structures. Journal of Structural Control 9 (1): 19–30. doi: 10.1002/stc.3.
  • Lu, Y. X., Y. Q. Cai, Q. F. Qu, and Q. H. Zhan. 2012. Study on the effect of supporting stiffness on energy dissipation efficiency of viscous dampers. Applied Mechanics and Materials 105: 96–101.
  • Maleki-Amin, M. J., and H. E. Estekanchi. 2018. Damage estimation of steel moment-resisting frames by endurance time method using damage-based target time. Journal of Earthquake Engineering 22 (10): 1806–35. doi: 10.1080/13632469.2017.1297265.
  • Martinez-Rodrigo, M., and M. L. Romero. 2003. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures 25 (7): 913–25. doi: 10.1016/S0141-0296(03)00025-7.
  • Mashayekhi, M., H. E. Estekanchi, A. Vafai, and S. A. Mirfarhadi. 2021. Simulation of cumulative absolute velocity consistent endurance time excitations. Journal of Earthquake Engineering 25 (5): 892–917. doi: 10.1080/13632469.2018.1540371.
  • Mashayekhi, M. R., and S. A. Mirfarhadi. 2018. Predicting probabilistic distribution functions of response parameters using the endurance time method. The Structural Design of Tall and Special Buildings 28 (1): 1–17. doi: 10.1002/tal.1553.
  • MATLAB. 2018. Version 9.4 (R2018a). Natick, Massachusetts, The MathWorks Inc.
  • Mayes, R., N. Wetzel, B. Weaver, K. Tam, W. Parker, A. Brown, and D. Pietra. 2013. Performance based design of buildings to assess damage and downtime and implement a rating system. Bulletin of the New Zealand Society for Earthquake Engineering 46 (1): 40–55. doi: 10.5459/bnzsee.46.1.40-55.
  • McGuire, R. K. 2008. Probabilistic seismic hazard analysis: Early history. Earthquake Engineering & Structural Dynamics 37 (3): 329–38. doi: 10.1002/eqe.765.
  • Mirfarhadi, S. A., and H. E. Estekanchi. 2020. Value based seismic design of structures using performance assessment by the endurance time method. Structure and Infrastructure Engineering 16 (10): 1397–415. doi: 10.1080/15732479.2020.1712436.
  • Mirfarhadi, S. A., H. E. Estekanchi, and M. Sarcheshmehpour. 2021. On optimal proportions of structural member cross-sections to achieve best seismic performance using value based seismic design approach. Engineering Structures 231: 111751. doi: 10.1016/j.engstruct.2020.111751.
  • Miyamoto, H. K., M. Eeri, J. P. Singh, and M. Eeri. 2002. Performance of Structures with Passive Energy Dissipators. 18 (1): 105–19. doi: 10.1193/1.1468650.
  • Mohsenian, V., I. Hajirasouliha, and A. Nikkhoo. 2020. Multi-level response modification factor estimation for steel moment-resisting frames using endurance-time method. Journal of Earthquake Engineering 26 (9): 1–21. doi: 10.1080/13632469.2020.1845875.
  • Movaffaghi, H., and O. Friberg. 2006. Optimal placement of dampers in structures using genetic algorithm. Engineering Computations 23 (6): 597–606. doi: 10.1108/02644400610680324.
  • Myrtle, R. C., S. F. Masri, R. L. Nigbor, and J. P. Caffrey. 2005. Classification and prioritization of essential systems in hospitals under extreme events. Earthquake Spectra 21 (3): 779–802. doi: 10.1193/1.1988338.
  • NEHRP Consultants Joint Venture. 2010. Evaluation of the FEMA P-695 Methodology for Quantification of Building Seismic Performance Factors (NIST GCR 10-917-8). National Institute of Standards and Technology .
  • OpenSees. 2018. Open system for earthquake engineering simulation Version 2.4.5 [Software], Berkeley, CA, Pacific Earthquake Engineering Research Center.
  • Palermo, M., S. Muscio, S. Silvestri, L. Landi, and T. Trombetti. 2013. On the dimensioning of viscous dampers for the mitigation of the earthquake-induced effects in moment-resisting frame structures. Bulletin of Earthquake Engineering 11 (6): 2429–46. doi: 10.1007/s10518-013-9474-z.
  • Park, K.-S., H.-M. Koh, and D. Hahm. 2004. Integrated optimum design of viscoelastically damped structural systems. Engineering Structures 26 (5): 581–91. doi: 10.1016/j.engstruct.2003.12.004.
  • Pavlou, E., and M. C. Constantinou. 2006. Response of nonstructural components in structures with damping systems. Journal of Structural Engineering 132 (7): 1108–17. doi: 10.1061/(ASCE)0733-9445(2006)132:7(1108).
  • RS Means. 2021. Construction Cost Indexes with RSMeans Data January 2021 (Means Construction Cost Indexes).
  • Seleemah, A. A., and M. C. Constantinou. 1997. Investigation of seismic response of buildings with linear and nonlinear fluid viscous dampers. Buffalo, US: National Center for Earthquake Engineering Research Buffalo.
  • Shin, H. 2010. Life-cycle cost-based optimal seismic design of structures with energy dissipation devices. Virginia Tech.
  • Shin, H., and M. P. Singh. 2014. Minimum failure cost-based energy dissipation system designs for buildings in three seismic regions – Part II: Application to viscous dampers. Engineering Structures 74: 275–82. doi: 10.1016/j.engstruct.2014.05.012.
  • Shin, H., and M. P. Singh. 2017. Minimum life-cycle cost-based optimal design of yielding metallic devices for seismic loads. Engineering Structures 144: 174–84. doi: 10.1016/j.engstruct.2017.04.054.
  • Silvestri, S., G. Gasparini, and T. Trombetti. 2010. A five-step procedure for the dimensioning of viscous dampers to be inserted in building structures. Journal of Earthquake Engineering 14 (3): 417–47. doi: 10.1080/13632460903093891.
  • Singh, M. P., and L. M. Moreschi. 2002. Optimal placement of dampers for passive response control. Earthquake Engineering & Structural Dynamics 31 (4): 955–76. doi: 10.1002/eqe.132.
  • Sorace, S., and G. Terenzi. 2009. Fluid viscous damped-based seismic retrofit strategies of steel structures: General concepts and design applications. Advanced Steel Construction 5 (3): 322–39.
  • Symans, M. D., and M. C. Constantinou. 1998. Passive fluid viscous damping systems for seismic energy dissipation. ISET Journal of Earthquake Technology 35 (4): 185–206.
  • Taflanidis, A. A., and J. L. Beck. 2009. Life-cycle cost optimal design of passive dissipative devices. Structural Safety 31 (6): 508–22. doi: 10.1016/j.strusafe.2009.06.010.
  • Uriz, P., and A. S. Whittaker. 2001. Retrofit of pre-Northridge steel moment-resisting frames using fluid viscous dampers. The Structural Design of Tall Buildings 10 (5): 371–90. doi: 10.1002/tal.199.
  • USGS. 2020. United States Geological Survey. United States Geol Surv 2020.
  • Vaezi, D., H. E. Estekanchi, and A. Vafai. 2014. A parametric study of seismic response in anchored steel tanks with endurance time method. Scientia Iranica 21 (5): 1608–19.
  • Vamvatsikos, D., and C. A. Cornell. 2002. The incremental dynamic analysis and its application to performance-based earthquake engineering. Proceedings of the 12th European Conference on Earthquake Engineering 40: 1375–92.
  • Wen, Y.-K., and Y. J. Kang. 2001. Minimum building life-cycle cost design criteria. I: Methodology. Journal of Structural Engineering 127 (3): 330–37. doi: 10.1061/(ASCE)0733-9445(2001)127:3(330).
  • Wongprasert, N., and M. D. Symans. 2004. Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building. Journal of Engineering Mechanics 130 (4): 401–06. doi: 10.1061/(ASCE)0733-9399(2004)130:4(401).
  • Yang, T. Y., J. Moehle, B. Stojadinovic, and A. Der Kiureghian. 2009. Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering 135 (10): 1146–54. doi: 10.1061/(ASCE)0733-9445(2009)135:10(1146).
  • Zhang, R.-H., and T. T. Soong. 1992. Seismic design of viscoelastic dampers for structural applications. Journal of Structural Engineering 118 (5): 1375–92. doi: 10.1061/(ASCE)0733-9445(1992)118:5(1375).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.