182
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A New Proxy for Near-Fault Acceleration Pulses and Implications on Inelastic Displacement Ratio

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3992-4004 | Received 06 Jun 2022, Accepted 29 Nov 2022, Published online: 16 Dec 2022

References

  • Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S. -J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, et al. 2013. PEER NGA-West2 database. PEER Report.
  • Ancheta, T. D., M. Eeri, R. B. Darragh, M. Eeri, J. P. Stewart, M. Eeri, E. Seyhan, M. Eeri, W. J. Silva, M. Eeri, et al. 2014. NGA-West2 database. Earthquake Spectra 30 (3):989–1005. doi:10.1193/070913EQS197M.
  • Anderson, J. C., and V. V. Bertero. 1987. Uncertainties in establishing design earthquakes. Journal of Structural Engineering 113 (8):1709–24. doi:10.1061/(asce)0733-9445(1987)113:8(1709).
  • ASCE. 2000. Prestandard and commentary for the seismic rehabilitation of building. FEMA 356, November.
  • ATC. 2005. Improvement of nonlinear static seismic analysis procedures. FEMA 440, 392.
  • Baker, J. W. 2007. Quantitative classification of Near-Fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America 97 (5):1486–501. doi:10.1785/0120060255.
  • Baker, J. W., and C. A. Cornell. 2006. Spectral shape, epsilon and record selection. Earthquake Engineering & Structural Dynamics 35 (9):1077–95. doi:10.1002/eqe.571.
  • Bertero, V. V., S. A. Mahin, and R. A. Herrera. 1978. Aseismic design implications of near-fault san fernando earthquake records. Earthquake Engineering & Structural Dynamics 6 (1):31–42. doi:10.1002/eqe.4290060105.
  • Bojórquez, E., and I. Iervolino. 2011. Spectral shape proxies and nonlinear structural response. Soil Dynamics and Earthquake Engineering 31 (7):996–1008. doi:10.1016/j.soildyn.2011.03.006.
  • Chang, Z., F. De Luca, and K. Goda. 2019a. Automated classification of near-fault acceleration pulses using wavelet packets. Computer-Aided Civil and Infrastructure Engineering 34 (7):569–85. doi:10.1111/mice.12437.
  • Chang, Z., F. De Luca, and K. Goda. 2019b. Near-fault acceleration pulses and non-acceleration pulses: effects on the inelastic displacement ratio. Earthquake Engineering & Structural Dynamics 48 (11):1256–76. doi:10.1002/eqe.3184.
  • Chang, Z., Q. Gao, G. Monti, H. Yu, and S. Yuan. 2023. Selection of pulse-like ground motions with strong velocity-pulses using moving-average filtering. Soil Dynamics and Earthquake Engineering 164:107574. doi:10.1016/j.soildyn.2022.107574.
  • Do, T. N., and F. C. Filippou. 2017. A damage model for structures with degrading response. Earthquake Engineering & Structural Dynamics 47 (2):311–32. doi:10.1002/eqe.2952.
  • Dunbar, W. S., and R. G. Charlwood. 1991. Empirical methods for the prediction of response spectra. Earthquake Spectra 7 (3):333–53. doi:10.1193/1.1585632.
  • Durucan, C., and M. Dicleli. 2015. Ap/Vp specific inelastic displacement ratio for seismic response estimation of structures. Earthquake Engineering & Structural Dynamics 44 (7):1075–97. doi:10.1002/eqe.2500.
  • Durucan, C., and A. R. Durucan. 2016. Ap/Vp specific inelastic displacement ratio for the seismic response estimation of sdof structures subjected to sequential near fault pulse type ground motion records. Soil Dynamics and Earthquake Engineering 89:163–70. doi:10.1016/j.soildyn.2016.08.009.
  • Fang, C., Q. Zhong, W. Wang, S. Hu, and C. Qiu. 2018. Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes. Engineering Structures 177:579–97. doi:10.1016/j.engstruct.2018.10.013.
  • Iervolino, I., E. Chioccarelli, and G. Baltzopoulos. 2012. Inelastic displacement ratio of near-source pulse-like ground motions. Earthquake Engineering & Structural Dynamics 41:2351–57. doi:10.1002/eqe.2167.
  • Jafarian, Y., E. Kermani, and M. H. Baziar. 2010. empirical predictive model for the vmax/amax ratio of strong ground motions using genetic programming. Computers & Geosciences 36 (12):1523–31. doi:10.1016/j.cageo.2010.07.002.
  • Kalkan, E., and N. S. Kwong. 2014. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings. Journal of Structural Engineering 140 (3):04013062. doi:10.1061/(ASCE)ST.1943-541X.0000845.
  • Kermani, E., Y. Jafarian, and M. H. Baziar. 2009. New predictive models for the vmax/amax ratio of strong ground motions using genetic programming. International Journal of Civil Engineering 7 (4):236–46.
  • Liu, T., and Q. Zhang. 2016. Ap/Vp specific equivalent viscous damping model for base-isolated buildings characterized by SDOF systems. Engineering Structures 111:36–47. doi:10.1016/j.engstruct.2015.12.024.
  • Loh, C. -H., Z. -K. Lee, T. -C. Wu, and S. -Y. Peng. 2000. Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999. Earthquake Engineering & Structural Dynamics 29 (6):867–97. doi:10.1002/(SICI)1096-9845(200006)29:6<867:AID-EQE943>3.0.CO;2-E.
  • Makris, N., and C. J. Black. 2004a. Dimensional analysis of rigid-plastic and elastoplastic structures under pulse-type excitations. Journal of Engineering Mechanics 130 (9):1006–18. doi:10.1061/(ASCE)0733-9399(2004)130:9(1006).
  • Makris, N., and C. J. Black. 2004b. Evaluation of peak ground velocity as a “Good” intensity measure for near-source ground motions. Journal of Engineering Mechanics 130 (9):1032–44. doi:10.1061/(ASCE)0733-9399(2004)130:9(1032).
  • Mavroeidis, G. P., G. Dong, and A. S. Papageorgiou. 2004. Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems. Earthquake Engineering & Structural Dynamics 33 (9):1023–49. doi:10.1002/eqe.391.
  • Mavroeidis, G. P., P. George, and A. S. Papageorgiou. 2003. A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America 93 (3):1099–131. doi:10.1785/0120020100.
  • Mazza, F. 2019. A plastic-damage hysteretic model to reproduce strength stiffness degradation. Bulletin of Earthquake Engineering 17 (6):3517–44. doi:10.1007/s10518-019-00606-3.
  • Minas, S., and C. Galasso. 2019. Accounting for spectral shape in simplified fragility analysis of case-study reinforced concrete frames. Soil Dynamics and Earthquake Engineering 119:91–103. doi:10.1016/j.soildyn.2018.12.025.
  • Miranda, E. 2001. Estimation of Inelastic deformation demands of SDOF systems. Journal of Structural Engineering 127 (9):1005–12. doi:10.1061/(ASCE)0733-9445(2001)127:9(1005).
  • Miranda, E., and V. V. Bertero. 1994. Evaluation of strength reduction factors for earthquake-resistant design. Earthquake Spectra 10 (2):357–79. doi:10.1193/1.1585778.
  • Mollaioli, F., and A. Bosi. 2012. Wavelet analysis for the characterization of forward-directivity pulse-like ground motions on energy basis. Meccanica 47 (1):203–19. doi:10.1007/s11012-011-9433-1.
  • Mukhopadhyay, S., and V. K. Gupta. 2013. Directivity pulses in near-fault ground motions-I: Identification, extraction and modeling. Soil Dynamics and Earthquake Engineering 50:1–15. doi:10.1016/j.soildyn.2013.02.017.
  • Poulos, A., E. Miranda, and J. W. Baker. 2022. Evaluation of earthquake response spectra directionality using stochastic simulations. Bulletin of the Seismological Society of America 112 (1):307–15. doi:10.1785/0120210101.
  • Ruiz-García, J. 2011. Inelastic displacement ratios for seismic assessment of structures subjected to forward-directivity near-fault ground motions. Journal of Earthquake Engineering 15 (3):449–68. doi:10.1080/13632469.2010.498560.
  • Shahi, S. K., and J. W. Baker. 2011. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America 101 (2):742–55. doi:10.1785/0120100090.
  • Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters 68 (1):199–222. doi:10.1785/gssrl.68.1.199.
  • Tian, L., S. Yi, and B. Qu. 2018. Orienting ground motion inputs to achieve maximum seismic displacement demands on electricity transmission towers in near-fault regions. Journal of Structural Engineering 144 (4):04018017. doi:10.1061/(ASCE)ST.1943-541X.0002000.
  • Tso, W. K., T. J. Zhu, and A. C. Heidebrecht. 1992. Engineering implication of ground motion A/V ratio. Soil Dynamics and Earthquake Engineering 11 (3):133–44. doi:10.1016/0267-7261(92)90027-B.
  • Vidic, T., P. Fajfar, and M. Fischinger. 1994. Consistent inelastic design spectra: Strength and displacement. Earthquake Engineering & Structural Dynamics 23 (5):507–21. doi:10.1002/eqe.4290230505.
  • Wang, G. -Q., X. -Y. Zhou, P. -Z. Zhang, and H. Igel. 2002. Characterstics of amplitude and duration of near fault strong ground motion from the 1999 Chi-Chi Taiwan earthquake. Soil Dynamics and Earthquake Engineering 22 (1):73–96. doi:10.1016/S0267-7261(01)00047-1.
  • Wen, Y. K. 1976. Method for random vibration of hysterectic systems. Journal of the Engineering Mechanics Division 102 (2):249–63. doi:10.1061/jmcea3.0002106.
  • Wu, Y. -F., H. Wang, A. -Q. Li, B. Sha, and K. -M. Bi. 2019. The strength reduction factors for seismic-isolated bridges characterized by SDOF bilinear systems in far-fault areas. Journal of Earthquake Engineering 23 (3):404–21. doi:10.1080/13632469.2017.1326425.
  • Yaghmaei-Sabegh, S., and P. Panjehbashi-Aghdam. 2018. Damage assessment of adjacent fixed- and isolated-base buildings under multiple ground motions. Journal of Earthquake Engineering 24 (10):1501–29. doi:10.1080/13632469.2018.1462274.
  • Zhai, C., Z. Chang, S. Li, Z. Chen, and L. Xie. 2013. Quantitative identification of near-fault pulse-like ground motions based on energy. Bulletin of the Seismological Society of America 103 (5):2591–603. doi:10.1785/0120120320.
  • Zhai, C., C. Li, S. Kunnath, and W. Wen. 2018. An efficient algorithm for identifying pulse-like ground motions based on significant velocity half-cycles. Earthquake Engineering & Structural Dynamics 47 (3):757–71. doi:10.1002/eqe.2989.
  • Zhao, T., and B. Zhao. 2021. A modified algorithm to identify the strongest velocity pulse in three orthogonal components of ground motions. Soil Dynamics and Earthquake Engineering 146:106749. doi:10.1016/j.soildyn.2021.106749.
  • Zhu, T. J., A. C. Heidebrecht, and W. K. Tso. 1988. Effect of peak ground acceleration to velocity ratio on ductility demand of inelastic systems. Earthquake Engineering & Structural Dynamics 16 (1):63–79. doi:10.1002/eqe.4290160106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.