267
Views
2
CrossRef citations to date
0
Altmetric
Research Article

State of the Art of Seismic Protection Technologies for Non-Engineered Buildings (N-EBs) in Developing Regions of the World

ORCID Icon & ORCID Icon
Pages 4327-4353 | Received 25 Apr 2022, Accepted 02 Jan 2023, Published online: 18 Jan 2023

References

  • Abang, A., and A. Aband. 1983. Utilization of bamboo as a low cost structural material. Appropriate building materials for low cost housing: African region. London, England.
  • Adanur, S. 2010. Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey. Natural Hazards and Earth System Sciences 10 (12):2547–56. doi:10.5194/nhess-10-2547-2010.
  • Ahmad, S., F. Ghani, and R. M. Adil. 2009. Seismic friction base isolation performance using demolished waste in masonry housing. Construction and Building Materials 23 (2009):146–52. doi:10.1016/j.conbuildmat.2008.01.012.
  • Al-Akhras, N. M. M. M. Smadi. 2002. Properties of tire rubber ash mortar. Proceedings of the International Conference on Sustainable Concrete Construction, University of Dundee, Scotland, UK.
  • Al-Anany, Y. M., and M. J. Tait. 2015. A numerical study on the compressive and rotational behavior of fiber reinforced elastomeric isolators (FREI). Composite Structures 133:1249–66. doi:10.1016/j.compstruct.2015.07.042.
  • Al-Anany, Y. M., N. C. Van Engelen, and M. J. Tait. 2017. Vertical and lateral behavior of unbonded fiber-reinforced elastomeric isolators. Journal of Composite Constructions 21 (5):04017019. doi:10.1061/(ASCE)CC.1943-5614.0000794.
  • Al-Hussaini, T. M., V. A. Zayas, and M. C. Constantinou. 2004. Seismic isolation of multi-story frame structures using spherical sliding isolation systems. Buffalo, New York: National Center for Earthquake Engineering Research.
  • Ambraseys, N., and R. Bilham. 2011. Corruption kills. Nature 469 (7329):153–55. doi:10.1038/469153a.
  • Anastasiadis, A., K. Senetakis, and K. Pitilakis. 2012. Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures. Geotechnical and Geological Engineering 30 (2):363–82. doi:10.1007/s10706-011-9473-2.
  • Angeli, P., G. Russo, and A. Paschini. 2013. Carbon fiber-reinforced rectangular isolators with compressible elastomer: Analytical solution for compression and bending. International Journal of Solids and Structures 50 (22–23):3519–27. doi:10.1016/j.ijsolstr.2013.06.016.
  • Arya, A. 1984. Sliding concept for mitigation of earthquake disaster to masonry buildings. In Proceedings of Eight World Conference on Earthquake Engineering. San Francisco, California.
  • Arya, A. S. 1994. Guidelines for earthquake resistant non-engineered construction. Paris: International Association for Earthquake Engineering.
  • Arya, A. S. 2000. Non-engineered construction in developing countries - an approach toward earthquake risk reduction. Auckland, New Zeland.
  • Ashkezari, G. D., A. A. Aghakouchak, and M. Kokabi. 2008. Design, manufacturing and evaluation of the performance of steel like fiber reinforced elastomeric seismic isolators. Journal of Materials Processing Technology 197 (1–3):140–50. doi:10.1016/j.jmatprotec.2007.06.023.
  • Bakhshi, A., M. H. Jafari, and V. V. Tabrizi. 2014. Study on dynamic and mechanical characteristics of carbon fiber- and polyamide fiber-reinforced seismic isolators. Materials and Structures 47 (2014):447–57. doi:10.1617/s11527-013-0071-z.
  • Banovic, I., J. Radnic, and N. Grgic. 2018. Shake table study on the efficiency of seismic base isolation using natural stone pebbles. Advances in Materials Science and Engineering 2018:1012527. doi:10.1155/2018/1012527.
  • Bayraktar, A., H. Keypour A. Naderzadeh. 2012. Application of ancient earthquake resistant method in modern construction technology. 15th World Conferenc on Earthquake Engineering, Lisboa.
  • Blondet, M., and R. Aguilar. 2007. Seismic Protection of Earthen Buildings. Conferencia Internacional en Ingenieria Sìsmica, Lima, Perù.
  • Blondet, M., N. Tarque J. Vargas. 2018. Using a Nylon rope mesh as seismic reinforcement for earthen constructions. Back to Earthen Architecture: Industrialized, Injected, Rammed, Stabilized 6th International Conference, Turkey.
  • Blondet, M., N. Tarque, J. Vargas, and H. Vargas. 2019. Evaluation of a rope mesh reinforcement system for adobe dwellings in seismic areas. In Structural Analysis of Historical Constructions, 405–12. Cham, Switzerland: Springer.
  • Blondet, M., J. Vargas, C. Sosa, and J. Soto. 2013. Seismic simulation tests to validate a dual technique for repairing adobe historical buildings damaged by earthquakes. In New generation earthen architecture: Learning from heritage, Turkey: Istanbul Aydin University. September 11–14.
  • Blondet, M., J. Vargas, C. Sosa J. Soto. 2014. Using mud injection and an external rope mesh to reinforce historical earthen buildings located in seismic areas. 9th International Conference on Structural Analysis of Historical Constructions. Mexico City, Mexico, October 14–17.
  • Boen, T. 2001. Earthquake resistant design of non-engineered buildings in Indonesia. Kamakura: Indonesian Earthquake Resistant Design.
  • Bothara, J. K. R. D. Sharpe. 2003. Seismic protection in developing countries: Where are the gaps in our approach? Pacific Conference on Earthquake Engineering, Wellington, New Zeland.
  • Brunet, S., J. C. De la Llera E. Kausel. 2017. Seismic isolation using recycled tire-rubber. 16th World Conference on Earthquake, Santiago Chile.
  • Calabrese, A. 2013. Analytical, numerical and experimental study of a novel low-cost base isolation system. Naples: University of Naples Federico II. http://www.fedoa.unina.it/9321/.
  • Calabrese, A., S. Galano, and N. Tran. 2020. Stability of fiber-reinforced bridge bearings under compression and shear loads. San Josè, California: Mineta Transportation Institute Publications.
  • Calabrese, A., E. Gandelli, V. Quaglini, S. Strano, M. Terzo, and C. Tordela. 2021a. Monitoring of hysteretic friction degradation of curved surface sliders through a nonlinear constrained estimator. Engineering Structures 226:111371. doi:10.1016/j.engstruct.2020.111371.
  • Calabrese, A., J. M. Kelly, C. Onorii, and G. Serino. 2011. Theoretical and experimental analysis of recycled rubber bearings with a flexible reinforcement for developing countries. In 7th World congress on joints, bearings and seismic systems for concrete structures. Nevada, USA: Civil + Structural Engineering media.
  • Calabrese, A., and N. Kumawat. 2019. Assessment of the applicability of recycled rubber fiber reinforced bearings (RR-FRBs) as base isolators of residential buildings in developing countries. Structures Congress.
  • Calabrese, A., D. Losanno, A. Barjani, M. Spizzuoco, and S. Strano. 2020a. Effects of the long-term aging of glass-fiber reinforced bearings (FRBs) on the seismic response of a base-isolated residential building. Engineering Structures 221:110735. doi:10.1016/j.engstruct.2020.110735.
  • Calabrese, A., D. Losanno, M. Spizzuoco, S. Strano, and M. Terzo. 2019a. Recycled rubber fiber reinforced bearings (RR-FRBs) as base isolators for residential buildings in developing countries: The demonstration building of Pasir Badak, Indonesia. Engineering Structures 192:126–44. doi:10.1016/j.engstruct.2019.04.076.
  • Calabrese, A., V. Quaglini, S. Strano, and M. Terzo. 2020b. Online estimation of the friction coefficient in sliding isolators. Structural Control & Health Monitoring 27 (3):e2459. doi:10.1002/stc.2459.
  • Calabrese, A., V. Quaglini, S. Strano, M. Terzo C. Tordela. 2020c. Friction coefficient estimation in sliding isolators through a nonlinear parametric estimation approach. The International Conference of IFToMM ITALY, Italy.
  • Calabrese, A., G. Serino S. Strano. 2017. Shaking table tests of a recycled rubber fiber-reinforced bearings isolated structure. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile, January 9th to 13th.
  • Calabrese, A., G. Serino, S. Strano M. Terzo. 2013. Investigation of the seismic performances of an FRBs base isolated steel frame through hybrid testing. Proceedings of the World Congress on Engineering 2013 Vol III, London, UK.
  • Calabrese, A., G. Serino, S. Strano, and M. Terzo. 2015. Experimental investigation of a low-cost elastomeric anti-seismic device using recycled rubber. Meccanica 50 (9):2201–18. doi:10.1007/s11012-015-0155-7.
  • Calabrese, A., M. Spizzuoco, S. Galano, N. Tran, S. Strano, and S. Terzo. 2021b. A parametric study on the stability of fiber reinforced rubber bearings under combined axial and shear loads. Engineering Structures 2021 (227):111441. doi:10.1016/j.engstruct.2020.111441.
  • Calabrese, A., M. Spizzuoco, D. Losanno, and A. Barjani. 2020d. Experimental and numerical investigation of wire rope devices in base isolation systems. Earthquakes and Structures 18 (3):275–84.
  • Calabrese, A., M. Spizzuoco, G. Serino, G. Della Corte, and G. Maddaloni. 2015. Shaking table investigation of a novel, low-cost, base isolation technology using recycled rubber. Structural Control & Health Monitoring 22 (1):107–22. doi:10.1002/stc.1663.
  • Calabrese, A., M. Spizzuoco, S. Strano, and M. Terzo. 2019b. Hysteresis models for response history analyses of recycled rubber–fiber reinforced bearings (RR-FRBs) base isolated buildings. Engineering Structures 178:635–44. doi:10.1016/j.engstruct.2018.10.057.
  • Calabrese, A., S. Strano, G. Serino, and M. Terzo. 2014. An extended Kalman filter procedure for damage detection of base-isolated structures. 2014 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems Proceedings, Naples, Italy.
  • Calabrese, A., S. Strano, and M. Terzo. 2015. Real-time hybrid simulations vs shaking table tests: Case study of a fibre-reinforced bearings isolated building under seismic loading. Structural Control & Health Monitoring 22 (3):535–56. doi:10.1002/stc.1687.
  • Calabrese, A., S. Strano, and M. Terzo. 2016. Parameter estimation method for damage detection in torsionally coupled base-isolated structures. Meccanica 51 (4):785–97. doi:10.1007/s11012-015-0257-2.
  • Charleson, A. W. 2008. Research on used car tyre strap reinforced adobe construction in peru.
  • Charleson, A. W. M. A. French. 2008. Used car tyre straps as seismic reinforcement for adobe houses. The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17.
  • Chopra, A. K. 1995. Dynamics of structures: Theory and applications to earthquake engineering. Englewood Cliffs: N.J: Prentice Hall.
  • Chourasiaa, A., S. Singhal, and J. Parashar. 2019. Experimental investigation of seismic strengthening technique for confined masonry buildings. Journal of Building Engineering 25:100834. doi:10.1016/j.jobe.2019.100834.
  • Chowdhury, M. A., and W. Hassan. 2013. Comparative study of the dynamic analysis of multi-storey irregular building with or without base isolator. International Journal of Scientific Engineering and Technology 2 (9):909–12.
  • Cilento, F., D. Losanno, and L. Piga. 2022. An experimental study on a novel reclaimed rubber compound for fiber-reinforced seismic isolators. Structures 45 (11):9–22. doi:10.1016/j.istruc.2022.09.009.
  • Constantinou, M. C., T. T. Soong, and C. F. Dargush. 1998. MCEER Monograph Series, No. 1 Passive energy dissipation systems for structural design and retrofit. BUffalo, N.Y: Multidisciplinary Center for Earthquake Engineering Research.
  • Cruz-Cunha, M. M., I. M. Miranda, and P. Conçalves. 2013. Handbook of research on ICTs for human-centered healthcare and social care services. Pennsylvania, Stati Uniti: IGI Global.
  • De Domenico, D., E. Gandelli, and V. Quaglini. 2020. Effective base isolation combining low-friction curved surface sliders and hysteretic gap dampers. Soil Dynamics and Earthquake Engineering 130:105989. doi:10.1016/j.soildyn.2019.105989.
  • De Domenico, D., D. Losanno, and N. Vaiana. 2023. Experimental tests and numerical modeling of full-scale unbonded fiber reinforced elastomeric isolators (UFREIs) under bidirectional excitation. Engineering Structures 274:115118. doi:10.1016/j.engstruct.2022.115118.
  • de Raaf, M. G., M. J. Tait, and H. Toopchi-Nezhad. 2011. Stability of fiber-reinforced elastomeric bearings in an unbonded application. Journal of Composite Materials 45 (18):1873–84. doi:10.1177/0021998310388319.
  • Dezfuli, F. H., and M. S. Alam. 2016. Experiment-based sensitivity analysis of scaled carbon-fiber-reinforced elastomeric isolators in bonded applications. Fibers 4 (4):4010004. doi:10.3390/fib4010004.
  • Dolce, M., D. Cardone, and R. Marnetto. 2000. Implementation and testing of passive control devices based on shape memory alloys. Earthquake Engineering & Structural Dynamics 29:945–68.
  • Donnini, J., V. Corinaldesi, and A. Nanni. 2016. Mechanical properties of FRCM using carbon fabrics with different coating treatments. Composites Part B 88:220–28. doi:10.1016/j.compositesb.2015.11.012.
  • Edil, T. B. 2004. A review of the mechanical and chemical properties of shredded tires and soil mixtures. Recycled Materials in Geotechnics. 127:1–21.
  • Edil, T. B., and P. J. Bosscher. 1994. Engineering properties of tire chips and soil mixtures. Geotechnical Testing Journal 17 (4):453–64. doi:10.1520/GTJ10306J.
  • Eldin, N. N., and A. B. Senouci. 1992. Rubber-tire particles as concrete aggregates. Journal of Materials in Civil Engineering 5 (4):478–96. doi:10.1061/(ASCE)0899-1561(1993)5:4(478).
  • Fujita, T., N. Funaki, N. Hori, N. Inoue, and S. Kawamata. 2008. Rocking pillar isolation system for masonry houses : Verifying vibration tests of a reduced scale test specimen. Journal of Structural and Construction Engineering 623:63–70. doi:10.3130/aijs.73.63.
  • Funaki, N. 2006. Earthquake response characteristics of rocking pillar isolation system developed for masonry houses. 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland.
  • Galano, S. 2018. Characterization of recycled rubber mats for low cost seismic isolation. Naples: University of Naples Federico II.
  • Galano, S. 2021. On the vertical response of fiber reinforced elastomeric isolators (FREIs) under combined vertical and lateral loading. Compdyn 2021 - 8th ECCCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athene, Greece, June 28-30.
  • Galano, S. 2022. Stability Assesments of Unbonded Fiber Reinforced Elastomeric Isolators. Naples: University of Naples Federico II. http://www.dist.unina.it/documents/15084734/15089813/PhD+Galano+34/7b15c183-d35b-4326-b497-85701aac8588.
  • Galano, S., A. Calabrese, and D. Losanno. 2021a. On the response of fiber reinforced elastomeric isolators (FREIs) under bidirectional shear loads. Structures 34 (2021):2340–54. doi:10.1016/j.istruc.2021.08.107.
  • Galano, S., A. Calabrese D. Losanno. 2021b. Tuning the lateral response of unbonded fiber reinforced elastomeric isolators (U-FREIs): Experimental - numerical findings. Compdyn 2021 - 8th ECCCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, June 28-30.
  • Galano, S., A. Calabrese, D. Losanno, G. Serino, and S. Strano. 2022. Tuning the lateral response of unbonded fiber reinforced elastomeric isolators (U-FREIs) through horizontal holes: Experimental and numerical findings. Composite Structures 289:115454. doi:10.1016/j.compstruct.2022.115454.
  • Galano, S., D. Losanno, and A. Calabrese. 2021. Stability analysis of unbonded fiber reinforced isolators of square shape. Engineering Structures 245 (2021):112846. doi:10.1016/j.engstruct.2021.112846.
  • Gams, M., A. Kwiecień, B. Zając M. Tomaževič. 2014. Seismic strengthening of brick masonry walls with flexible polymer coating. Proceedings of the 9th International Masonry Conference, Guimarães.
  • Ghavami, K. 2005. Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composite 27 (6):637–49. doi:10.1016/j.cemconcomp.2004.06.002.
  • Gries, T., M. Raina, T. Quadflieg, and O. Stolyarov. 2016. 1 - Manufacturing of textiles for civil engineering applications. Textile Fibre Composites in Civil Engineering 3–24.
  • Guglielmotti, A., C. Lucignano, and F. Quadrini. 2009. Production of rubber pads by tire recycling. International Journal Materials Engineering Innovation 1 (1):91–106. doi:10.1504/IJMATEI.2009.024029.
  • Habieb, A. B., F. Milani, G. Milani, and R. Cerchiaro. 2020. Rubber compounds made of reactivated EPDM for fiber-reinforced elastomeric isolators: An experimental study. Iranian Polymer Journal 29 (11):1031–43. doi:10.1007/s13726-020-00859-9.
  • Habieb, A. B., G. Milani, T. Tavio, and F. Milani. 2017. Low cost frictional seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study. The Open Civil Engineering Journal 1 (Suppl–5):1026–35. doi:10.2174/1874149501711011026.
  • Habieb, A. B., G. M. Tavio, and F. Milani. 2017. Seismic performance of a masonry building isolated with low-cost rubber isolators. Earthquake Resistant Engineering Structures 172:71–82.
  • Habieb, A. B., M. Valente, and G. Milani. 2019. Base seismic isolation of a historical masonry church using fiber reinforced elastomeric isolators. Soil Dynamics and Earthquake Engineering 120:127–45. doi:10.1016/j.soildyn.2019.01.022.
  • Hadad, H. A., A. Calabrese, S. Strano, and G. Serino. 2017. A base isolation system for developing countries using discarded tyres filled with elastomeric recycled materials. Journal of Earthquake Engineering 21 (2):246–66. doi:10.1080/13632469.2016.1172371.
  • Hanson, R. D., and T. T. Soong. 2001. Seismic design with supplemental energy dissipation devices, Vol. 8. Oakland (CA): Earthquake Engineering Research Institute: EERI Monograph.
  • Harajli, M., H. ElKhatib, and J. T. San-Jose. 2010. Static and cyclic out-of-plane response of masonry walls strengthened using textile-mortar system. Journal of Materials in Civil Engineering 22 (11):1171–80. doi:10.1061/(ASCE)MT.1943-5533.0000128.
  • Hasan, E., M. R. Karim, S. K. Shill, M. S. Mia M. S. Uddin. 2015. Utilization of bamboo as a construction material for low cost housing and resorts in bangladesh. International Conference on Recent Innovation in Civil Engineering for Sustainable Development, Gazipur, Bangladesh
  • Hazarika, H., K. Yasuhara, M. Hyodo, A. K. Karmokar Y. Mitarai. 2008. Mitigation of earthquake induced geotechnical disasters using a smart and novel geomaterial. The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17.
  • Jampole, E., G. Deierlein, E. Miranda, B. Fell, S. Swensen, and C. Acevedo. 2016. Full-scale dynamic testing of a sliding seismically isolated unibody house. Earthquake Spectra 32 (4):2245–70. doi:10.1193/010616EQS003M.
  • Jennings, E. N., and J. W. van de Lindt. 2013. Low Cost Shape Memory Alloy Devices for Seismic Response Modification of Light-Frame Wood Buildings. In Structures Congress 2013 : Bridging Your Passion with Your Profession, 1205–1216. ASCE Library.
  • Kang, G. J., and B. S. Kang. 2009. Dynamic analysis of fiber-reinforced elastomeric isolation structures. Journal of Mechanical Science and Technology 23 (2009):1132–41. doi:10.1007/s12206-008-1214-y.
  • Karkee, M. B., C. Cuadra, and L. Sunuwar. 2005. The challenges of protecting heritage architecture in developing countries from earthquake disasters. Structural Studies, Repairs and Maintenance of Heritage Architecture 83 (9):407–19.
  • Katsamakas, A. A., G. Belser, M. F. Vassiliou, and M. Blondet. 2022. Experimental investigation of a spherical rubber isolator for use in low income countries. Engineering Structures 250:113522. doi:10.1016/j.engstruct.2021.113522.
  • Katsamakas, A. A., M. Chollet, S. Eyyi, and M. F. Vassiliou. 2021. Feasibility study on re-using tennis balls as seismic isolation bearings. Frontiers of Buildings Environment 7 (768303). doi:10.3389/fbuil.2021.768303.
  • Kawamata, S., N. Funaki, N. Hori, T. Fujita N. Inoue. 2004. Base isolation system suitable for masonry houses. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6.
  • Kelly, J. M. 1986. Aseismic base isolation. Soil Dynamics and Earthquake Engineering 5 (3):202–09. doi:10.1016/0267-7261(86)90006-0.
  • Kelly, J. M. 1999. Analysis of fiber-reinforced elastomeric isolators. Journal of Seismic Earthquake Engineering 2 (1):19–34.
  • Kelly, J. M., and A. Calabrese. 2012. Mechanics of fiber reinforced bearings. Berkeley: Pacific Earthquake Engineering Research Center, Headquarters at the University of California.
  • Kelly, J. M., and A. Calabrese. 2013. Analysis of fiber-reinforced elastomeric isolators including stretching of reinforcement and compressibility of elastomer. Ingegneria Sismica 30 (3):5–14.
  • Kelly, J. M., A. Calabrese G. Serino. 2012. Design criteria for fiber reinforced rubber bearings. 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Kelly, J. M., and D. A. Konstantinidis. 2011. Mechanics of rubber bearings for seismic and vibration isolation. Hoboken, New Jersey: JohnWiley & Sons, Ltd.
  • Kelly, J. M., and S. M. Takhirov. 2001. Analytical and experimental study of fiber-reinforced elastomeric isolators. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
  • Konstantinidis, D. J. M. Kelly. 2014. Advances in low-cost seismic isolation with rubber. Tenth U.S. National Conference on Earthquake Engineering, Anchorage, Alaska.
  • Konstantinidis, D., and S. R. Moghadam. 2016. Compression of unbonded rubber layers taking into account bulk compressibility and contact slip at the supports. International Journal of Solids and Structures 87:206–21. doi:10.1016/j.ijsolstr.2016.02.008.
  • Kouris, L. A. S., and T. C. Triantafillou. 2018. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials 188:1221–33. doi:10.1016/j.conbuildmat.2018.08.039.
  • Kumarasamy, K., G. Shyamala, and H. Gebreyowhanse. 2020. Strength properties of bamboo fiber reinforced concrete. IOP Conference Series: Materials Science and Engineering, Ulaanbaatar, Mongolia.
  • Kwiecień, A., D. E. Hebel, M. Wielopolski, A. Javadian F. Heisel. 2015. Bamboo fibre reinforced polymers as highly flexible reinforcement of masonry structures in seismic areas. The 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & The 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015), Nanjing, China, December 14–16.
  • Lang, A. F. D. S. Jeffrey. 2005. Method and apparatus for reducing earthquake damage in developing nations using recycled Tires. United States Brevetto US 6,862,848 B1, 08 03.
  • Lee, H. S., H. Lee, J. S. Moon, and H. W. Jung. 1998. Development of tire-added latex concrete. ACI Materials Journal 95 (4):356–64.
  • Lee, M. H., S. H. Oh, C. Huh, Y. S. On, M. H. Yoon, and T. S. Moon. 2002. Ultimate energy absorption capacity of steel plate slit dampers subjected to shear force. Steel Structures 2:71–79.
  • Liu, W., Y. Wang, and M. Wang. 2014. Experimental and numerical study of enhancing the seismic behavior of rammed earth buildings. Advanced Materials Research 1 (2014):925–31. doi:10.4028/scientific.net/AMR.919-921.925.
  • Liu, K., M. Wang, and Y. Wang. 2015. Seismic retrofitting of rural rammed earth buildings using externally bonded fibers. Construction and Building Materials 2015 (100):91–101. doi:10.1016/j.conbuildmat.2015.09.048.
  • Losanno, D., A. Calabrese, I. E. Madera-Sierra, M. Spizzuoco, J. Marulanda, P. Thomson, and G. Serino. 2020. Recycled versus natural-rubber fiber-reinforced bearings for base isolation: Review of the experimental findings. Journal of Earthquake Engineering. doi:10.1080/13632469.2020.1748764.
  • Losanno, D., I. E. Madera Sierra, A. Calabrese, J. Marulanda P. Thomson. 2019. Analytical vs numerical determination of the axial and lateral stiffness of fiber reinforced isolators. COMPDYN 2019. 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece.
  • Losanno, D., I. E. Madera Sierra, M. Spizzuoco, J. Marulanda, and P. Thomson. 2020. Experimental performance of unbonded polyester and carbon fiber reinforced elastomeric isolators under bidirectional seismic excitation. Engineering Structures 209:110003. doi:10.1016/j.engstruct.2019.110003.
  • Losanno, D., F. Palumbo, A. Calabrese, T. Barrasso, and N. Vaiana. 2020. Preliminary investigation of aging effects on recycled rubber fiber reinforced bearings (RR-FRBs). Journal of Earthquake Engineering. doi:10.1080/13632469.2021.1871683.
  • Losanno, D., R. Ravichandran, and F. Parisi. 2022. Seismic fragility models for base-isolated unreinforced masonry buildings with fibre-reinforced elastomeric isolators. Earthquake Engng Struct Dyn 1–27. doi:10.1002/eqe.3761.
  • Losanno, D., M. Spizzuoco, and A. Calabrese. 2019. Bidirectional shaking-table tests of unbonded recycled-rubber fiber-reinforced bearings (Rr-frbs). Structural Control & Health Monitoring 26 (9):1–14. doi:10.1002/stc.2386.
  • Madhekar, S. N., and H. Vairagade. 2019. Innovative base isolators from scrap tyre rubber pads.
  • Malpass, D. 1944. World Bank. Washington, Stati Uniti. Accessed August 21, 2021. https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html.
  • Manandhar, R., J. H. Kim, and J. T. Kim. 2019. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. Journal of Asian Architecture and Building Engineering 18 (2):49–59. doi:10.1080/13467581.2019.1595629.
  • Masad, E., R. Taha, C. Ho, and T. Papagiannakis. 1996. Engineering properties of tire/soil mixtures as a lightweight fill material. Geotechnical Testing Journal 19 (3):297–304. doi:10.1520/GTJ10355J.
  • Mazzolani, F. M. 2006. Seismic Upgrading of RC Buildings by Advanced Techniques - the ILVA-IDEM Research Project. Monza (Italy): Polimetrica Publisher.
  • Meguro, K., R. Soti, S. Navaratnaraj, and M. Numada. 2012. Dynamic testing of masonry houses retrofitted by bamboo band mesh. Journal of Japan Society of Civil Engineers 68 (4):760–65. doi:10.2208/jscejseee.68.I_760.
  • Menna, C., D. Asprone, M. Durante, A. Zinno, A. Balsamo, and A. Prota. 2015. Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Construction and Building Materials 100:111–21. doi:10.1016/j.conbuildmat.2015.09.051.
  • Mercedes, L., E. Bernat-Maso, and L. Gil. 2020. In-plane cyclic loading of masonry walls strengthened by vegetal-fabric-reinforced cementitious matrix (FRCM) composites. Engineering Structures 221:111097. doi:10.1016/j.engstruct.2020.111097.
  • Mercedes, L., L. Gil, and E. Bernat-Maso. 2018. Mechanical performance of vegetal fabric reinforced cementitious matrix (FRCM) composites. Construction and Building Materials 175:161–73. doi:10.1016/j.conbuildmat.2018.04.171.
  • Mishra, H. K., and A. Igarashi. 2012. Experimental and analytical study of scrap tire rubber pad for seismic isolation. International Journal of Civil and Environmental Engineering 6 (2):107–113.
  • Mishra, H. K., A. Igarashi, D. Ji, and H. Matsushima. 2014. Pseudo-dynamic testing for seismic performance assessment of buildings with seismic isolation system using scrap tire rubber pad isolators. Journal of Civil Engineering and Architecture 8 (1):73–88. doi:10.17265/1934-7359/2014.01.009.
  • Montella, G., A. Calabrese, and G. Serino. 2014. Mechanical characterization of a tire derived material: Experiments, hyperelastic modeling and numerical validation. Construction and Building Materials 66:336–47. doi:10.1016/j.conbuildmat.2014.05.078.
  • Montella, G., G. Mastroianni G. Serino. 2012. Experimental and numerical investigations on innovative floating-slab track including recycled rubber elements. Proceedings of ISMA2012-USD2012, Belgium.
  • Moon, B. Y., G. J. Kang, B. S. Kang, and J. M. Kelly. 2002. Design and manufacturing of fiber reinforced elastomeric isolator for seismic isolation. Journal of Materials Processing Technology 130 (131):145–50. doi:10.1016/S0924-0136(02)00713-6.
  • Moon, B. Y., G. J. Kang, B. S. Kang, and H. S. Kim. 2003b. Mechanical property analysis and design of shock absorber system using fiber bearing by experimental method. JSME International Journal 46 (1):289–96. doi:10.1299/jsmec.46.289.
  • Moon, B. Y., G. J. Kang, B. S. Kang, G. S. Kim J. M. Kelly. 2003a. Mechanical properties of seismic isolation system with fiber-reinforced bearing of strip type.
  • Morales, E., A. Filiatrault A. Aref. 2017. Sustainable and low cost room seismic isolation for essential care units of hospitals in developing countries. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile, January 9th to 13th.
  • Morales, E., A. Filiatrault, and A. Aref. 2018. Seismic floor isolation using recycled tires for essential buildings in developing countries. Bulletin of Earthquake Engineering 2018 (16):6299–333. doi:10.1007/s10518-018-0416-7.
  • Mordini, A., and A. Strauss. 2008. An innovative earthquake isolation system using fibre reinforced rubber bearings. Engineering Structures 30 (2008):2739–51. doi:10.1016/j.engstruct.2008.03.010.
  • Moroz, J. G., S. L. Lisse, and M. D. Hagel. 2014. Performance of bamboo reinforced concrete masonry shear walls. Construction and Building Materials 2014 (61):125–37. doi:10.1016/j.conbuildmat.2014.02.006.
  • Moroz, J. G. S. L. Lissel. 2009. Tonkin cane bamboo as reinforcement in masonry shear walls. 11th Canadian Masonry Symposium, Toronto, Ontario, May 31- June 3.
  • Munoz, A., M. A. Diaz, and R. Reyna. 2019. Applicability study of a low cost seismic isolator prototype using recycled rubber. Tecnia 29 (2):56–73. doi:10.21754/tecnia.v29i2.706.
  • Naeim, F., and J. M. Kelly. 1999. Design of seismic isolated structures: From theory to practice. New York: John Wiley & Sons, Inc.
  • Naghshineh, A. K., U. Akyüz, and A. Caner. 2014. Comparison of fundamental properties of new types of fiber-mesh-reinforced seismic isolators with conventional isolators. Earthquake Engineering & Structural Dynamics 2014 (43):301–16. doi:10.1002/eqe.2345.
  • Nanda, R. P., P. Agarwal, and M. Shrikhande. 2012a. Base isolation system suitable for masonry buildings. Asian Journal of Civil Engineering (Building and Housing) 13 (2):195–202.
  • Nanda, R. P., P. AgarwaL, and M. Shrikhande. 2012b. Suitable friction sliding materials for base isolation of masonry buildings. Shock and Vibration 19 (6):1327–39. doi:10.1155/2012/106436.
  • Nanda, R. P., and R. Karim. 2016. Low cost sliding isolators for developing countries. Asian Journal of Civil Engineering (Bhrc) 17 (4):417–25.
  • Nanda, R. P., M. Shrikhande, and R. Agarwal. 2016. Low-cost base-isolation system for seismic protection of rural buildings. Practice Periodical on Structural Design and Construction 21 (1):04015001. doi:10.1061/(ASCE)SC.1943-5576.0000254.
  • Nuzzo, I., D. Losanno, N. Caterino, G. Serino, and L. M. Bozzo Rotondo. 2018. Experimental and analytical characterization of steel shear links for seismic energy dissipation. Engineering Structures 172:405–18. doi:10.1016/j.engstruct.2018.06.005.
  • Onorii, C., and G. Serino. 2007. Analytical modeling and experimental validation of a recycled rubber material. 5th European Conference on Constitutive Models for Rubber, ECCMR 2007, Ecole Nationale Supérieure des Mines de Paris.
  • Onorii, C., G. Serino A. Calabrese. 2011. Structural bearings made of recycled rubber: Theoretical aspects and experimental characterization. 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven.
  • Orfeo, A., E. Tubaldi, A. H. Muhr, and D. Losanno. 2022. Mechanical behaviour of rubber bearings with low shape factor. Engineering Structures 266:114532. doi:10.1016/j.engstruct.2022.114532.
  • Osgooei, P. M., M. J. Tait, and D. Konstantinidis. 2014. Three-dimensional finite element analysis of circular fiber-reinforced elastomeric bearings under compression. Composite Structures 108 (2014):191–204. doi:10.1016/j.compstruct.2013.09.008.
  • Osgooei, P. M., N. C. Van Engelen, D. Konstantinidis, and M. J. Tait. 2015. Experimental and finite element study on the lateral response of modified rectangular fiber-reinforced elastomeric isolators (MR-FREIs). Engineering Structures 85:293–303. doi:10.1016/j.engstruct.2014.11.037.
  • Pakpour, F., H. A. Beigi C. Christopoulos. 2019. Development of low-cost seismic isolation platform (SIP) for mass implementation in developing countries. 12th Canadian Conference on Earthquake Engineering, Chateau Frontenac, Quebec.
  • Papanicolaou, C. G., T. C. Triantafillou, K. Karlos, and M. Papathanasiou. 2007. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: In-plane cyclic loading. Materials and Structures 40 (10):1081–97. doi:10.1617/s11527-006-9207-8.
  • Pauletta, M., A. Cortesia, and G. Russo. 2015. Roll-out instability of small size fiber-reinforced elastomeric isolators in unbonded applications. Engineering Structures 102 (2015):358–68. doi:10.1016/j.engstruct.2015.08.019.
  • Perri, F., C. Faella, and E. Martinelli. 2016. Cost-competitive hysteretic devices for seismic energy dissipation in steel bracings: Experimental tests and low-cycle fatigue characterisation. Construction and Building Materials 113:57–67. doi:10.1016/j.conbuildmat.2016.03.021.
  • Pinarbasi, S., and Y. Mengi. 2008. Elastic layers bonded to flexible reinforcements. International Journal of Solids and Structures 45 (3–4):794–820. doi:10.1016/j.ijsolstr.2007.08.029.
  • Promputthangkoon, P. A. F. Hyde. 2007. Compressibility and liquefaction potential of rubber composite soils. Proceedings of International Workshop on Tire Derived GeoMaterials, Kurihama, Japan.
  • Quaglini, V., P. Dubini, M. Furinghetti, and A. Pavese. 2019. Assessment of scale effects in the experimental evaluation of the coefficient of friction of sliding isolators. Journal of Earthquake Engineering 26 (1):525–45. doi:10.1080/13632469.2019.1687054.
  • Ravichandran, N., D. Losanno, and F. Parisi. 2021. Comparative assessment of finite element macro-modelling approaches for seismic analysis of non-engineered masonry constructions. Bulletin of Earthquake Engineering 19 (13):5565–607. doi:10.1007/s10518-021-01180-3.
  • Ruano, P. C., and A. Strauss. 2021. Finite element analysis for nonlinear unbonded circular fiber-reinforced elastomeric bearings. Journal of Composites Science 5 (7):170. doi:10.3390/jcs5070170.
  • Russo, G., M. Pauletta, and A. Cortesia. 2013. A study on experimental shear behavior of fiber-reinforced elastomeric isolators with various fiber layouts, elastomers and aging conditions. Engineering Structures 52 (2013):422–33. doi:10.1016/j.engstruct.2013.02.034.
  • Sadek, D. M., and M. M. El-Attar. 2015. Structural behavior of rubberized masonry walls. Journal of Cleaner Production 89:174–86. doi:10.1016/j.jclepro.2014.10.098.
  • Sassu, M., A. De Falco, L. Giresini, and M. L. Puppio. 2016. Structural solutions for low-cost bamboo frames: experimental tests and constructive assessments. Materials 9 (346). doi:10.3390/ma9050346.
  • Serino, G., D. Losanno, M. Spizzuoco, and A. Calabrese. 2019. Unbonded recycled rubber fiber reinforced bearings to isolate low-riseresidential buildings in developing countries : Bidirectional shaking table experimental campaign. Atti del XVIII Convegno ANIDIS L’ingegneria Sismica in Italia, Ascoli Piceno. settembre 15–19.
  • Smith, A., and T. Redman. 2009. A critical review of retrofitting methods for unreinforced masonry structures. EWB-UK Research Conference, The Royal Academy of Engineering, University of Bristol, January.
  • Soong, T. T., and B. F. Spencer Jr. 2002. Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Engineering Structures 24 (3):243–59. doi:10.1016/S0141-0296(01)00092-X.
  • Spizzuoco, M., A. Calabrese, and G. Serino. 2014. Innovative low-cost recycled rubber–fiber reinforced isolator: Experimental tests and finite element analyses. Engineering Structures 76:99–111. doi:10.1016/j.engstruct.2014.07.001.
  • Spizzuoco, M., V. Quaglini, A. Calabrese, G. Serino, and C. Zambrano. 2017. Study of wire rope devices for improving the re-centering capability of base isolated buildings. Structural Control & Health Monitoring 24 (6):1928. doi:10.1002/stc.1928.
  • Strauss, A., E. Apostolidi, T. Zimmermann, U. Gerhaher, and S. Dritsos. 2014. Experimental investigations of fiber and steel reinforced elastomeric bearings: Shear modulus and damping coefficient. Engineering Structures 75 (2014):402–13. doi:10.1016/j.engstruct.2014.06.008.
  • Subrahmanyam, B. V. 1984. Bamboo reinforcement for cement matrices. Guildford, England: New Reinforced Concrete Surrey University Press.
  • Terai, M. 2014. Study on shear capacity and behaviors of bamboo reinforced masonry shear. IABSE Symposium Report, Prague.
  • Terai, M., and K. Minami. 2011. Fracture behavior and mechanical properties of bamboo reinforced concrete members. Procedia Engineering 10:2967–72. doi:10.1016/j.proeng.2011.04.492.
  • Terai, M. K. Minami. 2012. Research and development on bamboo reinforced concrete structure. 15th World Conference on Earthquake Engineering, Lisboa.
  • Toopchi-Nezhad, H., R. G. Drysdale, and M. J. Tait. 2009. Parametric study on the response of stable unbonded-fiber reinforced elastomeric isolators (SU-FREIs). Journal of Composite Materials 43 (15):1569–619. doi:10.1177/0021998308106322.
  • Toopchi-Nezhad, H., M. R. Ghotb, Y. M. Al-Anany, and M. J. Tait. 2019. Partially bonded fiber reinforced elastomeric bearings: Feasibility, effectiveness, aging effects, and low temperature response. Engineering Structures 179:120–28. doi:10.1016/j.engstruct.2018.10.043.
  • Toopchi-Nezhad, H., M. J. Tait, and R. G. Drysdale. 2008a. Lateral response evaluation of fiber-reinforced neoprene seismic isolators utilized in an unbonded application. Journal of Structural Engineering 134 (10):1627–37. doi:10.1061/(ASCE)0733-9445(2008)134:10(1627).
  • Toopchi-Nezhad, H., M. J. Tait, and R. G. Drysdale. 2008b. Testing and modeling of square carbon fiber-reinforced elastomeric seismic isolators. Structural Control & Health Monitoring 15 (6):876–900. doi:10.1002/stc.225.
  • Toopchi-Nezhad, H., M. J. Tait, and R. G. Drysdale. 2011. Bonded versus unbonded strip fiber reinforced elastomeric isolators: Finite element analysis. Composite Structures 93 (2011):850–59. doi:10.1016/j.compstruct.2010.07.009.
  • Topçu, I. B. 1995. The properties of rubberized concretes. Cement and Concrete Research 25 (2):304–10. doi:10.1016/0008-8846(95)00014-3.
  • Tran, C., A. Calabrese, M. Vassiliou, and S. Galano. 2020. A simple strategy to tune the lateral response of unbonded fiber reinforced elastomeric isolators (FREIs). Engineering Structures 222:111128. doi:10.1016/j.engstruct.2020.111128.
  • Triantafillou, T. 2016. 15 - Strengthening of existing masonry structures: Concepts and structural behavior. Textile Fibre Composites in Civil Engineering 361–74.
  • Tsai, H. H. 2004. Compression stiffness of infinite-strip bearings of laminated elastic material interleaving with flexible reinforcements. International Journal of Solids and Structures 41 (24–25):6647–60. doi:10.1016/j.ijsolstr.2004.06.005.
  • Tsai, H. H. 2006. Compression stiffness of circular bearings of laminated elastic material interleaving with flexible reinforcements. International Journal of Solids and Structures 43 (11–12):3484–97. doi:10.1016/j.ijsolstr.2005.05.012.
  • Tsai, H. C., and J. M. Kelly. 2001. Stiffness Analysis of fiber-reinforced elastomeric isolators. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
  • Tsai, H. H., and J. M. Kelly. 2005a. Buckling load of seismic isolators affected by flexibility of reinforcement. International Journal of Solids and Structures 42 (1):255–69. doi:10.1016/j.ijsolstr.2004.07.020.
  • Tsai, H. H., and J. M. Kelly. 2005b. Buckling of short beams with warping effect included. International Journal of Solids and Structures 42 (1):239–53. doi:10.1016/j.ijsolstr.2004.07.021.
  • Tsang, H. H. 2008. Seismic isolation by rubber–soil mixtures for developing countries. Earthquake Engineering & Structural Dynamics 2008 (37):283–303. doi:10.1002/eqe.756.
  • Tsang, H. H., N. T. Lam, S. Yaghmaei-Sabegh, M. N. Sheikh, and B. Indraratna. 2010. Geotechnical seismic isolation by scrap tire-soil mixtures. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Stati Uniti, Rolla, Missouri University of Science and Technology.
  • Tsang, H. H., S. Lo, X. Xu, and M. Sheikh. 2012. Seismic isolation for low-to-medium-rise buildings using granulated rubber soil mixtures, numerical study. Earthquake Engineering & Structural Dynamics 2021 (41):2009–24. doi:10.1002/eqe.2171.
  • Tsang, H. H., M. N. Sheikh, S. H. Lo N. T. Lam. 2008. Qushion: Earthquake protection by rubber-soil Mixture. The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17.
  • Tsiavos, A., N. A. Alexander, A. Diambra, E. Ibraim, P. J. Vardanega, A. Gonzalez-Buelga, and A. Sextos. 2019. A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dynamics and Earthquake Engineering 2019 (125):105731. doi:10.1016/j.soildyn.2019.105731.
  • Tsiavos, A., D. Kolyfetis, G. Panzarasa, I. Burgert, and B. Stojadinovic. 2022. Shaking table investigation of a low-cost and sustainable timber-based energy dissipation system with recentering ability. Bulletin of Earthquake Engineering. doi:10.1007/s10518-022-01464-2.
  • Tsiavos, A., A. Sextos, A. Stavridis, M. Dietz, L. Dihoru, and N. A. Alexander. 2020. Large-scale experimental investigation of a low-cost PVC ‘sand-wich’ (PVC-s) seismic isolation for developing countries. Earthquake Spectra 36 (4):1886–911. doi:10.1177/8755293020935149.
  • Tsiavos, A., A. Sextos, A. Stavridis, M. Dietz, L. Dihoru, and N. A. Alexander. 2021. Experimental investigation of a highly efficient, low-cost PVC-rollers sandwich (PVC-RS) seismic isolation. Strctures 33:1590–602. doi:10.1016/j.istruc.2021.05.040.
  • Tsiavos, A., A. Sextos, A. Stavridis, M. Dietz, L. Dihoru, F. Di Michele, and N. A. Alexander. 2021. Low-cost hybrid design of masonry structures for developing countries: Shaking table tests. Soil Dynamics and Earthquake Engineering 146:106675. doi:10.1016/j.soildyn.2021.106675.
  • Turer, A., and M. Golalmis. 2008. Scrap tire ring as a low-cost post-tensioning material for masonry strengthening. Materials and Structures 41 (8):1345–61. doi:10.1617/s11527-007-9333-y.
  • Turer, A., S. Z. Korkmaz, and H. H. Korkmaz. 2006. Performance improvement studies of masonry houses using elastic post-tensioning straps. Earthquake Engineering & Structural Dynamics 36 (5):683–705. doi:10.1002/eqe.649.
  • Turer, A., and B. Ozden. 2008. Seismic base isolation using low-cost scrap tire pads (STP). Materials and Structures 41 (5):891–908. doi:10.1617/s11527-007-9292-3.
  • Vaiana, N., and L. Rosati. 2023. Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing 182:109539. doi:10.1016/j.ymssp.2022.109539.
  • Vaiana, N., S. Sessa, F. Marmo, and L. Rosati. 2019a. An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Composite Strucutres 211:196–212. doi:10.1016/j.compstruct.2018.12.017.
  • Vaiana, N., S. Sessa, F. Marmo, and L. Rosati. 2019b. A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93 (3):1647–69. doi:10.1007/s11071-018-4282-2.
  • van de Lindt, J. W., and R. A. Atadero. 2008. Shake table test results for a half-scale reinforced concrete Indonesian house with and without economical base isolation. Asian Journal of Civil Engineering (Building and Housing) 9 (1): 1–13.
  • Van Engelen, N. C., and J. M. Kelly. 2015. Correcting for the influence of bulk compressibility on the design properties of elastomeric bearings. Journal of Engineering Mechanics 141 (6): 04014170. doi: 10.1061/(ASCE)EM.1943-7889.0000891.
  • Van Engelen, N. C., D. Konstantinidis, and M. J. Tait. 2016. Structural and nonstructural performance of a seismically isolated building using stable unbonded fiber-reinforced elastomeric isolators. Earthquake Engineering & Structural Dynamics 45 (3): 421–39. doi: 10.1002/eqe.2665.
  • Van Engelen, N. C., P. M. Osgooei, M. J. Tait, and D. Konstantinidis. 2014. Experimental and finite element study on the compression properties of modified rectangular fiber-reinforced elastomeric isolators (MR-FREIs). Engineering Structures 74: 52–64. doi: 10.1016/j.engstruct.2014.04.046.
  • Van Engelen, N. C., M. J. Tait D. Konstantinidis. 2012a. Horizontal behaviour of stable unbonded fiber reinforced elastomeric isolators (SU-FREIs) with holes. World Conference on Earthquake Engineering, Lisboa.
  • Van Engelen, N. C., M. J. Tait D. Konstantinidis. 2012b. Vertical response behaviour of stable unbonded fiber reinforced elastomeric isolators (SU-FREIs) with holes in the loaded surface. Canadian Society for Civil Engineering Annual General Conference, Edmonton, Alberta, Canada, June 6-9.
  • Van Engelen, N. C., M. J. Tait, and D. Konstantinidis. 2016. Development of design code oriented formulas for elastomeric bearings including bulk compressibility and reinforcement extensibility. Journal of Engineering Mechanics 142 (6): 04016024. doi:10.1061/(ASCE)EM.1943-7889.0001015.
  • Van Engele, N. C., M. J. Tait, and D. Konstantinidis. 2015. Model of the shear behavior of unbonded fiber-reinforced elastomeric isolators. Journal of Structural Engineering 141 (7): 04014169. doi: 10.1061/(ASCE)ST.1943-541X.0001120.
  • Vengala, J., B. N. Mohanthy, S. Raghunath. 2015. Seismic performance of Bamboo housing– an overview. 10th World Bamboo Congress Proceedings, Damyang, Korea.
  • Vengala, J., and J. W. van de Lindt. 2013. Seismic performance of single family dwellings constructed using bamboo-mortar composite. Asian Journal of Civil Engineering (BHRC) 14 (1):33–45.
  • Wijaya, T. U. 2020. Experimental study of Indonesian low-cost glass fiber reinforced elastomeric isolators (GFREI). International Journal on Advanced Science Engineering Information Technology 10 (1):311–17. doi:10.18517/ijaseit.10.1.8054.
  • Wikipedia. 2021. Wikipedia. Accessed August 20, 2021. https://en.wikipedia.org/wiki/Lists_of_21st-century_earthquakes.
  • Wikipedia®. 2023. Vernacular architecture. https://en.wikipedia.org/wiki/Vernacular_architecture.
  • Xiao, H., J. W. Butterworth, and T. Larkin. 2004. Low-technology techniques for seismic isolation. New Zealand society for earthquake engineering. New Zealand.
  • Yamaguchi, N., T. Narafu, A. Turer, M. Iiba H. Imai. 2008. Shaking table test of simple and affordable seismic isolation. The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17.
  • Yang, T., S. Bergquist, P. M. Calvi, and R. Wiebe. 2021. Improving seismic performance using adaptive variable friction systems. Soil Dynamics and Earthquake Engineering 140:106442. doi:10.1016/j.soildyn.2020.106442.
  • Zaverdas, C. M. M. D. Symans. 2018. Investigation of vehicle shock absorbers for low-cost seismic protection of structures. Structures Congress.
  • Zayas, V. A., S. S. Low, and S. A. Mahin. 1990. A simple pendulum technique for achieving seismic isolation. Earthquake Spectra 6 (2):317–33. doi:10.1193/1.1585573.
  • Zisan, M. B., and A. Igarashi. 2021. Lateral load performance and seismic demand of unbonded scrap tire rubber pad base isolators. Earthquake Engineering & Engineering Vibration 2021 (20):803–21. doi:10.1007/s11803-021-2053-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.