305
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Numerical Study on Dynamic Response of Underground Structure in Coral Sand Under Earthquakes

, , &
Pages 62-84 | Received 01 May 2022, Accepted 23 Jan 2023, Published online: 06 Feb 2023

References

  • Adampira, M., M. Derakhshandi, and A. Ghalandarzadeh. 2019. Experimental Study on Seismic Response Characteristics of Liquefiable Soil Layers. Journal of Earthquake Engineering 25 (7):1287–315. doi:10.1080/13632469.2019.1568930.
  • Bao, X., J. Liu, S. Chen, and P. Wang. 2020. Seismic Analysis of the Reef-seawater System: Comparison between 3D and 2D Models. Journal of Earthquake Engineering 26 (6):1–14. doi:10.1080/13632469.2020.1785976.
  • Chen, G., B. Ruan, K. Zhao, W. Chen, H. Zhuang, X. Du, S. Khoshnevisan, and C. H. Juang. 2020. Nonlinear Response Characteristics of Undersea Shield Tunnel Subjected to Strong Earthquake Motions. Journal of Earthquake Engineering 24 (3):351–80. doi:10.1080/13632469.2018.1453416.
  • Chen, S., H. Zhuang, D. Quan, J. Yuan, K. Zhao, and B. Ruan. 2019. Shaking table test on the seismic response of large-scale subway station in a loess site: A case study. Soil Dynamics and Earthquake Engineering 123:173–84. doi:10.1016/j.soildyn.2019.04.023.
  • Chian Siau, C., K. Tokimatsu, and G. Madabhushi Santana Phani. 2014. Soil Liquefaction–Induced Uplift of Underground Structures: Physical and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering 140 (10):04014057. doi:10.1061/(ASCE)GT.1943-5606.0001159.
  • Ding, X., L. Feng, C. Wang, Z. Chen, and L. Han. 2020. Shaking table tests of the seismic response of a utility tunnel with a joint connection. Soil Dynamics and Earthquake Engineering 133:106133. doi:10.1016/j.soildyn.2020.106133.
  • Ding, X., Y. Zhang, Q. Wu, Z. Chen, and C. Wang. 2021. Shaking table tests on the seismic responses of underground structures in coral sand. Tunnelling and Underground Space Technology 109:103775. doi:10.1016/j.tust.2020.103775.
  • Dong, R., L. Jing, Y. Li, Z. Yin, G. Wang, and K. Xu. 2020. Seismic deformation mode transformation of rectangular underground structure caused by component failure. Tunnelling and Underground Space Technology 98:103298. doi:10.1016/j.tust.2020.103298.
  • Durante, M. G., L. Di Sarno, G. Mylonakis, C. A. Taylor, and A. L. Simonelli. 2016. Soil–pile–structure interaction: Experimental outcomes from shaking table tests. Earthquake Engineering & Structural Dynamics 45 (7):1041–61. doi:10.1002/eqe.2694.
  • Gao, Z., M. Zhao, and X. Du. 2022. Modal Pushover Analysis for Seismic Performance Assessment of Underground Structures. Journal of Earthquake Engineering 1–19. doi:10.1080/13632469.2022.2061644.
  • Green, R. A., S. M. Olson, B. R. Cox, G. J. Rix, E. Rathje, J. Bachhuber, J. French, S. Lasley, and N. Martin. 2011. Geotechnical aspects of failures at Port-au-Prince seaport during the. Earthquake Spectra 27 (1_suppl1):S43–65. doi:10.1193/1.3636440. 12 January 2010.
  • He, J., J. Chu, and V. Ivanov. 2013. Mitigation of liquefaction of saturated sand using biogas. Géotechnique 63 (4):267–75. doi:10.1680/geot.SIP13.P.004.
  • Hussien, M. N., M. Karray, T. Tobita, and S. Iai. 2015. Kinematic and inertial forces in pile foundations under seismic loading. Computers and Geotechnics 69:166–81. doi:10.1016/j.compgeo.2015.05.011.
  • Iai, S. 1989. Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field. Soils and Foundations 29 (1):105–18. doi:10.3208/sandf1972.29.105.
  • Jafarian, Y., H. Javdanian, and A. Haddad. 2018. Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: Experimental and comparative study. Soil Dynamics and Earthquake Engineering 107:339–49. doi:10.1016/j.soildyn.2018.01.033.
  • Kammererl, A., R. Seed, J. Wuz, M. Riemer, and J. Pestana. 2004. Pore Pressure Development in Liquefiable Soils Under Bi-Directional Loading Conditions. Paper read at Proceedings, 11th Int. Conf. on Soil Dynamics and Earthquake Engineering (Vol. 2, p. 697), Berkeley, USA, Paper.
  • Kammerer, A., J. Wu, M. Riemer, J. Pestana, and R. Seed. 2004. A new multi-directional direct simple shear testing database. Paper read at Proceedings, 13th World Conf. on Earthquake Engr., Paper, Vancouver, B.C., Canada.
  • Kheradi, H., Y. Morikawa, G. Ye, and F. Zhang. 2019. Liquefaction-induced buckling failure of group-pile foundation and countermeasure by partial ground improvement. International Journal of Geomechanics 19 (5):04019020. doi:10.1061/(ASCE)GM.1943-5622.0001379.
  • Kosekt, J., O. Matsuo, and Y. KoGa. 1997. Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake. Soils and Foundations 37 (1):97–108. doi:10.3208/sandf.37.97.
  • Koutsourelakis, S., J. H. Prévost, and G. Deodatis. 2002. Risk assessment of an interacting structure–soil system due to liquefaction. Earthquake Engineering & Structural Dynamics 31 (4):851–79. doi:10.1002/eqe.125.
  • Li, T. 2017. Seismic Response Analysis of Coral Reef. Harbin, China: Institute of Engineering Mechanics, China Earthquake Administration.
  • Li, W., Y. Chen, A. W. Stuedlein, H. Liu, X. Zhang, and Y. Yang. 2018. Performance of X-shaped and circular pile-improved ground subject to liquefaction-induced lateral spreading. Soil Dynamics and Earthquake Engineering 109:273–81. doi:10.1016/j.soildyn.2018.03.022.
  • Liang, K., Y. He, and G. X. Chen. 2020. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands. Rock Soil Mech 41 (01):23–31+8. doi:10.16285/j.rsm.2018.2359.
  • Lin, D., W. Broere, and J. Cui. 2022. Metro systems and urban development: Impacts and implications. Tunnelling and Underground Space Technology 125:104509. doi:10.1016/j.tust.2022.104509.
  • Liu, C., L. Tang, X. Ling, L. Deng, L. Su, and X. Zhang. 2017. Investigation of liquefaction-induced lateral load on pile group behind quay wall. Soil Dynamics and Earthquake Engineering 102:56–64. doi:10.1016/j.soildyn.2017.08.016.
  • López Jiménez, G. A., D. Dias, and O. Jenck. 2019. Effect of the soil–pile–structure interaction in seismic analysis: Case of liquefiable soils. Acta Geotechnica 14 (5):1509–25. doi:10.1007/s11440-018-0746-2.
  • Lv, Y., Y. Wang, and D. Zuo. 2019. Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand. Powder Technol 356:21–30. doi:10.1016/j.powtec.2019.07.088.
  • Ma, W., Y. Qin, K. Zhao, and G. Chen. 2021. Comparisons on liquefaction behavior of saturated coral sand and quartz sand under principal stress rotation. Marine Georesources & Geotechnology 1–13. doi:10.1080/1064119X.2021.1882627.
  • Mahmoud, A. O., M. N. Hussien, M. Karray, M. Chekired, C. Bessette, and L. Jinga. 2020. Mitigation of liquefaction-induced uplift of underground structures. Computers and Geotechnics 125:103663. doi:10.1016/j.compgeo.2020.103663.
  • Medley, E. W. 2007. Geological Engineering Reconnaissance of Damage caused by the October 15, 2006 Hawaii Earthquakes. ISSMGE International Journal of Geoengineering Case Histories 1 (2):89–135.
  • Mejia, L. H., and M. R. Yeung. 1995. Liquefaction of coralline soils during the 1993 Guam earthquake. Paper read at Earthquake-Induced Movements and Seismic Remediation of Existing Foundations and Abutments.
  • Miao, Y., Y. Zhong, B. Ruan, K. Cheng, and G. Wang. 2020. Seismic response of a subway station in soft soil considering the structure-soil-structure interaction. Tunnelling and Underground Space Technology 106:103629. doi:10.1016/j.tust.2020.103629.
  • Montoya-Noguera, S., and F. Lopez-Caballero. 2016. Effect of coupling excess pore pressure and deformation on nonlinear seismic soil response. Acta Geotechnica 11 (1):191–207. doi:10.1007/s11440-014-0355-7.
  • Olson, S. M., R. A. Green, S. Lasley, N. Martin, B. R. Cox, E. Rathje, J. Bachhuber, and J. French. 2011. Documenting liquefaction and lateral spreading triggered by the. Earthquake Spectra 27 (1_suppl1):S93–116. doi:10.1193/1.3639270. 12 January 2010.
  • Orense, R. P., I. Morimoto, Y. Yamamoto, T. Yumiyama, H. Yamamoto, and K. Sugawara. 2003. Study on wall-type gravel drains as liquefaction countermeasure for underground structures. Soil Dynamics and Earthquake Engineering 23 (1):19–39. doi:10.1016/S0267-7261(02)00152-5.
  • Qiu, Q., L. Li, Y. J. Hsu, Y. Wang, C. H. Chan, and A. D. Switzer. 2019. Revised earthquake sources along Manila Trench for tsunami hazard assessment in the South China Sea. Natural Hazards and Earth System Sciences 19 (7):1565–83. doi:10.5194/nhess-19-1565-2019.
  • Rajesh, B. G., and D. Choudhury. 2016. Influence of non-breaking wave force on seismic stability of seawall for passive condition. Ocean Engineering 114:47–57. doi:10.1016/j.oceaneng.2016.01.006.
  • Rasouli, R., I. Towhata, and T. Hayashida. 2015. Mitigation of seismic settlement of light surface structures by installation of sheet-pile walls around the foundation. Soil Dynamics and Earthquake Engineering 72:108–18. doi:10.1016/j.soildyn.2015.02.010.
  • Salem, M., H. Elmamlouk, and S. Agaiby. 2013. Static and cyclic behavior of North Coast calcareous sand in Egypt. Soil Dynamics and Earthquake Engineering 55 (12):83–91. doi:10.1016/j.soildyn.2013.09.001.
  • Sandoval, E. A., and M. A. Pando. 2012. Experimental assessment of the liquefaction resistance of calcareous biogenous sands. Earth Sciences Research Journal 16 (1):55–63. doi:10.1007/s11038-012-9396-9.
  • Sharma Shambhu, S., and A. Ismail Mostafa. 2006. Monotonic and Cyclic Behavior of Two Calcareous Soils of Different Origins. Journal of Geotechnical and Geoenvironmental Engineering 132 (12):1581–91. doi:10.1061/(ASCE)1090-0241(2006)132:12(1581).
  • Skolnik, D., and M. Ciudad-Real. 2022. Seismic structural health monitoring to prevent unnecessary economic loss from non-damaging earthquakes in European and Middle Eastern cities. Bulletin of Earthquake Engineering 20 (9):4589–602. doi:10.1007/s10518-022-01423-x.
  • Sun, Q., and D. Dias. 2019. Seismic behavior of circular tunnels: Influence of the initial stress state. Soil Dynamics and Earthquake Engineering 126:105808. doi:10.1016/j.soildyn.2019.105808.
  • Sun, Q., D. Dias, X. Guo, and P. Li. 2019. Numerical study on the effect of a subway station on the surface ground motion. Computers and Geotechnics 111:243–54. doi:10.1016/j.compgeo.2019.03.026.
  • Tao, L., P. Ding, C. Shi, X. Wu, S. Wu, and S. Li. 2019. Shaking table test on seismic response characteristics of prefabricated subway station structure. Tunnelling and Underground Space Technology 91:102994. doi:10.1016/j.tust.2019.102994.
  • Terry, J. P., N. Winspear, J. Goff, and P. H. H. Tan. 2017. Past and potential tsunami sources in the South China Sea: A brief synthesis. Earth-Science Reviews 167:47–61. doi:10.1016/j.earscirev.2017.02.007.
  • Wang, C., X. Ding, Z. Chen, L. Feng, and L. Han. 2021. Seismic response of utility tunnels subjected to different earthquake excitations. Geomechanics & Engineering 24 (1):67–79. doi:10.12989/GAE.2021.24.1.067.
  • Wang, J., D. Lü, F. Jin, and C. Zhang. 2013. Accuracy of the half-power bandwidth method with a third-order correction for estimating damping in multi-DOF systems. Earthquake Engineering and Engineering Vibration 12 (1):33–38. doi:10.1007/s11803-013-0149-1.
  • Wang, J., J. Yang, H. Zhuang, G. Ma, and Y. Sun. 2021. Seismic Responses of a Large Unequal-span Underground Subway Station in Liquefiable Soil Using Shaking Table Test. Journal of Earthquake Engineering 26 (16):1–22. doi:10.1080/13632469.2021.1991523.
  • Wang, R., T. Zhu, J.-K. Yu, and J. -M. Zhang. 2022. Influence of vertical ground motion on the seismic response of underground structures and underground-aboveground structure systems in liquefiable ground. Tunnelling and Underground Space Technology 122:104351. doi:10.1016/j.tust.2021.104351.
  • Wang, X.-Z., Y.-Y. Jiao, R. Wang, M.-J. Hu, Q.-S. Meng, and F.-Y. Tan. 2011. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Engineering Geology 120 (1–4):40–47. doi:10.1016/j.enggeo.2011.03.011.
  • Werner, S., N. McCullough, W. Bruin, A. Augustine, G. Rix, B. Crowder, and J. Tomblin. 2011. Seismic Performance of Port de Port-au-Prince during the Haiti Earthquake and Post-Earthquake Restoration of Cargo Throughput. Earthquake Spectra 27 (1_suppl1):387–410. doi:10.1193/1.3638716.
  • Wu, Q., X. Ding, Z. Chen, and Y. Zhang. 2020. Shaking Table Tests on Seismic Responses of Pile-soil-superstructure in Coral Sand. Journal of Earthquake Engineering 26 (7):1–27. doi:10.1080/13632469.2020.1803160.
  • Wu, Q., X. Ding, and Y. Zhang. 2022. Microfabric evolution of coral sand foundations during seismic liquefaction using 3D images. Soil Dynamics and Earthquake Engineering 162:107445. doi:10.1016/j.soildyn.2022.107445.
  • Wu, Q., X. Ding, Y. Zhang, Z. Chen, and Y. Zhang. 2021. Numerical simulations on seismic response of soil-pile-superstructure in coral sand. Ocean Engineering 239:109808. doi:10.1016/j.oceaneng.2021.109808.
  • Wu, W., S. Ge, Y. Yuan, W. Ding, and I. Anastasopoulos. 2020. Seismic response of subway station in soft soil: Shaking table testing versus numerical analysis. Tunnelling and Underground Space Technology 100:103389. doi:10.1016/j.tust.2020.103389.
  • Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. Liquefaction resistance of bio-cemented calcareous sand. Soil Dynamics and Earthquake Engineering 107:9–19. doi:10.1016/j.soildyn.2018.01.008.
  • Yang, J., and H. Sze. 2011. Cyclic strength of sand under sustained shear stress. Journal of Geotechnical and Geoenvironmental Engineering 137 (12):1275–85. doi:10.1061/(ASCE)GT.1943-5606.0000541.
  • Zaneldin, E. K. 2007. Trenchless construction: An emerging technology in United Arab Emirates. Tunnelling and Underground Space Technology 22 (1):96–105. doi:10.1016/j.tust.2006.04.001.
  • Zhang, D., A. Wang, and X. Ding. 2021. Seismic response of pile groups improved with deep cement mixing columns in liquefiable sand: Shaking table tests. Canadian Geotechnical Journal 59 (6):994–1006. doi:10.1139/cgj-2020-0505.
  • Zhang, W., L. Han, L. Feng, X. Ding, L. Wang, Z. Chen, H. Liu, A. Aljarmouzi, and W. Sun. 2020. Study on seismic behaviors of a double box utility tunnel with joint connections using shaking table model tests. Soil Dynamics and Earthquake Engineering 136:106118. doi:10.1016/j.soildyn.2020.106118.
  • Zhang, Z., H. Wei, and X. Qin. 2017. Experimental study on damping characteristics of soil-structure interaction system based on shaking table test. Soil Dynamics and Earthquake Engineering 98:183–90. doi:10.1016/j.soildyn.2017.04.002.
  • Zhao, K., Q. Wang, H. Zhuang, Z. Li, and G. Chen. 2022. A fully coupled flow deformation model for seismic site response analyses of liquefiable marine sediments. Ocean Engineering 251:111144. doi:10.1016/j.oceaneng.2022.111144.
  • Zhong, Z., Y. Shen, M. Zhao, L. Li, and X. Du. 2021. Seismic Performance Evaluation of Two-story and Three-span Subway Station in Different Engineering Sites. Journal of Earthquake Engineering 26 (14):1–31. doi:10.1080/13632469.2021.1964647.
  • Zhu, T., J. Hu, Z. Zhang, J. -M. Zhang, and R. Wang. 2021. Centrifuge Shaking Table Tests on Precast Underground Structure–Superstructure System in Liquefiable Ground. Journal of Geotechnical and Geoenvironmental Engineering 147 (8):04021055. doi:10.1061/(ASCE)GT.1943-5606.0002549.
  • Zhu, T., R. Wang, and J. -M. Zhang. 2021. Evaluation of various seismic response analysis methods for underground structures in saturated sand. Tunnelling and Underground Space Technology 110:103803. doi:10.1016/j.tust.2020.103803.
  • Zhuang, H., J. Ren, Y. Miao, L. Jing, E. Yao, and C. Xu. 2021. Seismic Performance Levels of a Large Underground Subway Station in Different Soil Foundations. Journal of Earthquake Engineering 25 (14):2808–33. doi:10.1080/13632469.2019.1651423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.