106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anti-Plane Wave Scattering by a Circular Cavity in Complex Stratified Sites Based on the Hamilton System-Based Derivation of a Novel SBFEM

, , & ORCID Icon
Pages 1015-1039 | Received 18 Jul 2022, Accepted 13 Jun 2023, Published online: 06 Jul 2023

References

  • Amini, D., B. Gatmiri, and P. Maghoul. 2021. Seismic response of alluvial valleys subject to oblique incidence of shear waves. Journal of Earthquake Engineering 3:1–25.
  • Apsel, R. J., and J. E. Luco. 1983. “On the Green’s functions for a layered half-space,” Part II. Bulletin of the Seismological Society of America 73 (4):931–51. doi:10.1785/BSSA0730040931.
  • Bazyar, M. H., and C. Song. 2006. Time-harmonic response of non‐homogeneous elastic unbounded domains using the scaled boundary finite‐element method. Earthquake Engineering and Structural Dynamics 35 (3):357–83. doi:10.1002/eqe.526.
  • Birk, C., and R. Behnke. 2012. A modified scaled boundary finite element method for three‐dimensional dynamic soil‐structure interaction in layered soil. International Journal for Numerical Methods in Engineering 89 (3):371–402. doi:10.1002/nme.3251.
  • Boore, D. M. 1972. A note on the effect of simple topography on seismic SH waves. Bulletin of the Seismological Society of America 62 (1):275–84. doi:10.1785/BSSA0620010275.
  • Bouchon, M. 1981. A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America 71 (4):959–71. doi:10.1785/BSSA0710040959.
  • Chen, X. 1996. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. III. Theory of 2D P-SV case. Bulletin of the Seismological Society of America 86 (2):389–405. doi:10.1785/BSSA0860020389.
  • Fradkin, P. L. 2005. The great earthquake and firestorms of906: How San Francisco nearly destroyed itself. Berkeley: University of California Press.
  • Gilbert, F., and G. E. Backus. 1966. Propagator matrices in elastic wave and vibration problems. Geophysics 31 (2):326–32. doi:10.1190/1.1439771.
  • Haskell, N. A. 1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America 43 (1):17–34. doi:10.1785/BSSA0430010017.
  • Haskell, N. A. 1960. Crustal reflection of plane SH waves. Journal of Geophysical Research 65 (12):4147–50. doi:10.1029/JZ065i012p04147.
  • Huang, D., G. Wang, C. Du, and F. Jin. 2021. Seismic amplification of soil ground with spatially varying shear wave velocity using 2D spectral element method. Journal of Earthquake Engineering 25 (14):2834–49. doi:10.1080/13632469.2019.1654946.
  • Iida, H., T. Hiroto, N. Yoshida, and M. Iwafuji. 1996. Damage to Daikai subway station. Soils and Foundations 36 (Special):283–300. doi:10.3208/sandf.36.Special_283.
  • Jiang, T., and H. Tajimi. 2009. Foundation-structure dynamic interaction analysis method: Principle and application of thin layer method. Tong Ji University Press.
  • Kausel, E., and J. M. Roësset. 1975. Dynamic stiffness of circular foundations. Journal of the Engineering Mechanics Division 101 (EM6):771–85. doi:10.1061/JMCEA3.0002072.
  • Kennett, B. 2009. Seismic wave propagation in stratified media. Canberra ACT 0200, Australia: ANU E Press.
  • Komatitsch, D., and J. P. Vilotte. 1998. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismology Society of America 88 (2):368–92. doi:10.1785/BSSA0880020368.
  • Kontoe, S., L. Zdravkovic, D. M. Potts, and C. O. Menkiti. 2008. Case study on seismic tunnel response. Revue Canadienne De Géotechnique 45 (12):1743–64. doi:10.1139/T08-087.
  • Lee, V. W., and M. E. Manoogian. 1995. Surface motion above an arbitrary shape underground cavity for incident SH waves. Journal of European Earthquake Engineering 7 (1):3–11.
  • Liang, J., and Z. Ba. 2012. Amplification of plane SH waves by a cavity in layered half-space. Journal of Earthquake Engineering and Engineering Vibration 32 (2):14–24.
  • Liao, Z., and J. Liu. 1992. Fundamental problems of wave finite element simulation. Science in China Series B-Chemistry, Life Science and Earth Sciences 22 (8):874–82.
  • Liao, Z., Z. Zhou, and Y. Zhang. 2002. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics 45 (4):533–45. doi:10.1002/cjg2.269.
  • Li, Z., Z. Hu, G. Zhong, and H. Lin. 2020. A modified scaled boundary finite element method for dynamic response of a discontinuous layered half-space. Applied Mathematical Modelling 87:77–90. doi:10.1016/j.apm.2020.05.028.
  • Li, Y., Z. Li, Z. Hu, and G. Lin. 2021. Coupled FEM/SBFEM investigation on the characteristic analysis of seismic motions of a trapezoidal canyon in a layered half-space. Engineering Analysis with Boundary Elements 132:248–62. doi:10.1016/j.enganabound.2021.07.007.
  • Li, Z., J. Li, and G. Lin. 2018. Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM. Rock and Soil Mechanics 39 (11):4242–50.
  • Lin, G., Z. Li, and J. Li. 2018. A substructure replacement technique for the numerical solution of wave scattering problem. Soil Dynamics and Earthquake Engineering 111:87–97. doi:10.1016/j.soildyn.2018.04.031.
  • Lin, G., S. Lu, and J. Liu. 2016. Duality system-based derivation of the modified scaled boundary finite element method in the time domain and its application to anisotropic soil. Applied Mathematical Modelling 40 (9/10):5230–55. doi:10.1016/j.apm.2015.12.009.
  • Liu, J., Y. Gu, and Y. Du. 2006. Consitent viscous-spring artificial boundaries and viscous-spring boundary elements. Chinese Journal of Geotechnical Engineering 9:1070–75.
  • Liu, Z., Z. Huang, L. Huang, J. Sun, and J. Du. 2022. Two-dimensional fast multipole indirect boundary element method-based solution to p-wave scattering by a mountain with large-scale random cracks in an elastic half-space. International Journal of Applied Mechanics 16 (2):2140007. doi:10.1142/S1793431121400078.
  • Liu, J., and Y. Lu. 1998. A direct method for analysis of dynamic soil-structure interaction. China Civil Engineering Journal 3:55–64.
  • Luco, J. E., and R. J. Apsel. 1983. On the Green’s functions for a layered half-space. Part I. Bulletin of the Seismological Society of America 73 (4):909–29.
  • Lysmer, J., and G. Wass. 1972. Shear waves in plane infinite structures. Journal of the Engineering Mechanics Division 98 (EM1):85–105. doi:10.1061/JMCEA3.0001583.
  • Mandal, A., and D. Maity. 2015. Finite element analysis of dam-foundation coupled system considering cone-type local non-reflecting boundary condition. Journal of Earthquake Engineering 20 (3–4):428–46. doi:10.1080/13632469.2015.1085464.
  • Oliveira Barbosa, J. M., J. Park, and E. Kausel. 2012. Perfectly matched layers in the thin layer method. Computer Methods in Applied Mechanics and Engineering 217-220:262–74. doi:10.1016/j.cma.2011.12.006.
  • Schmid, G., G. Willms, and Y. Huh. 1988. SSI 2D/3D Soil Structure Interaction: Ein Programmsystem zur Berechnung von Bauwerk-Boden-Wechselwirkungsproblemen mit der Randelementmethode. Wissenschaftliche Mitteilungen Nr.2, SFB51. Ruhr-Universitat Bochum.
  • Shuyu, W., and T. Teng. 2014. Hybrid method combines transfinite interpolation with series expansion to simulate the anti-plane response of a surface irregularity. Journal of Earthquake Engineering 30 (4):349–60. doi:10.1017/jmech.2014.27.
  • Shuyu, W., T. Teng, and C. Chou. 2020. Anti-plane response induced by circular cavity beneath semi-circular canyon. Journal of Earthquake Engineering 26 (5):2353–80. doi:10.1080/13632469.2020.1760966.
  • Smith, W. D. 1975. The application of finite element analysis to body wave propagation problems. Geophysical Journal of the Royal Astronomical Society 42 (2):747–68. doi:10.1111/j.1365-246X.1975.tb05890.x.
  • Song, C., and J. P. Wolf. 1995. Consistent infinitesimal finite-element-cell method: Out-of-plane motion. Journal of Engineering Mechanics and Engineering 123 (1–4):355–70. doi:10.1016/0045-7825(95)00781-U.
  • Song, C., and J. P. Wolf. 1996. Consistent infinitesimal finite-element cell method: Three-dimensional vector wave equation. International Journal for Numerical Methods in Engineering 39 (13):2189–208. doi:10.1002/(SICI)1097-0207(19960715)39:13<2189:AID-NME950>3.0.CO;2-P.
  • Song, C., and J. P. Wolf. 1997. The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Computer Methods in Applied Mechanics and Engineering 147 (3–4):329–55. doi:10.1016/S0045-7825(97)00021-2.
  • Tajimi, H. 1972. Approximate solution to the vibration of foundation-soil system based on partitioned layers. Lecture Abstracts of Japanese Architecture Society, 485–486.
  • Tajimi, H. 1976. Vibration analysis of soil-structure system based on three-dimensional thin layer-element method. Collected Paper of Japanese Architecture Socity, Structure Division 243:41–51. doi:10.3130/aijsaxx.243.0_41.
  • Tompson, W. T. 1950. Transmission of elastic waves through a stratified soil medium. Journal of Applied Physics 21 (2):89–93. doi:10.1063/1.1699629.
  • Wang, G., C. Du, D. Huang, F. Jin, C. H. Koo Raymond, and S. H. Kwan Julian. 2018. Parametric models for 3D topographic amplification of ground motions considering subsurface soils. Soil Dynamics and Earthquake Engineering 115:41–54. doi:10.1016/j.soildyn.2018.07.018.
  • Wang, Z., B. Gao, Y. Jiang, and S. Yuan. 2009. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E: Technological Sciences 52 (2):546–58. doi:10.1007/s11431-009-0054-z.
  • Wang, W. L., T. T. Wang, J. Su, and T. Huang. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research 16 (3):133–50. doi:10.1016/S0886-7798(01)00047-5.
  • Wolf, J. P. 1989. Soil-structure-interaction analysis in time domain. Nuclear Engineering and Design 111 (3):381–93. doi:10.1016/0029-5493(89)90249-5.
  • Wolf, J. P. 1994. Foundation vibration analysis using simple physical models. Englewood Cliffs (NJ): Prentice-Hall.
  • Wolf, J. P. 2003. The scaled boundary finite element method. Chichester, England: John Wiley and Sons.
  • Wolf, J. P., and A. Paronesso. 1992. Lumped-parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock. Earthquake Engineering and Structure Dynamics 21 (12):1021–38. doi:10.1002/eqe.4290211201.
  • Wolf, J. P., and C. Song. 1995. Consistent infinitesimal finite-element cell method: In-plane motion. Computer Methods in Applied Mechanics and Engineering 123 (1–4):355–70. doi:10.1016/0045-7825(95)00781-U.
  • Wolf, J. P., and C. Song. 1996. Finite-element modelling of unbounded media. Chichester, England: John Wiley & Sons.
  • Zhang, C., and J. P. Wolf. 1998. Dynamic soil-structure interaction: Current research in China and Switzerland, 10–35. Amsterdam, New York: Elsevier.
  • Zhang, W., Z. Zhang, and X. Chen. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophysical Journal International 190 (1):358–78. doi:10.1111/j.1365-246X.2012.05472.x.
  • Zhong, W. 2004. Duality system in applied mechanics and optimal control. New Yorks: Liuwer Academic Publisher, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.